Dipendenza dal flavour delle distribuzioni TMD non polarizzate

### *Andrea Signori* Università di Pavia





# Estrazione della dipendenza dal flavour delle distribuzioni partoniche dipendenti dal momento trasverso (TMDs) da produzione di adroni semi-inclusiva all'esperimento COMPASS

## **Quark Parton Model**



## Che cosa sono le

# transverse-momentum-dependent distributions

# (TMDs)?

## Distribuzioni partoniche (PDFs) collineari



PDFs: struttura **monodimensionale** del protone nello spazio degli impulsi

$$f_1^a(x)$$

Densità di probabilità di trovare un partone con flavour a all'interno del protone

10/23/12

Andrea Signori - Università di Pavia

## TMD PDFs



TMD PDFs: analisi della struttura **3-dimensionale** del protone
nello spazio degli impulsi

 $f_1^a(x, p_T^2)$ 

"Transverse-momentum distributions in a diquark spectator model" <u>PhysRevD.78.074010</u>

## A cosa servono le TMDs ?

## A cosa servono le TMDs ?

• Tomografia 3-dim degli adroni

## A cosa servono le TMDs ?

• Tomografia 3-dim degli adroni

 Strumento fondamentale per la fisica delle alte energie in generale





 Alla scala della massa del protone la QCD non è attualmente calcolabile sulla base di metodi perturbativi



 Alla scala della massa del protone la QCD non è attualmente calcolabile sulla base di metodi perturbativi

$$\alpha_S(1 \text{ GeV}) \sim 0.35$$

• Scegliamo di estrarre informazioni dai dati sperimentali con procedure di fit



Analisi di scattering profondamente anelastico semi-inclusivo (SIDIS) di muoni non polarizzati su nucleoni non polarizzati all'esperimento COMPASS



Analisi di scattering profondamente anelastico semi-inclusivo (SIDIS) di muoni non polarizzati su nucleoni non polarizzati all'esperimento COMPASS



Semi-inclusive Deep Inelastic Scattering







#### Approssimazioni utilizzate

1. One-photon exchange

#### Approssimazioni utilizzate

- 1. One-photon exchange
- 2. Small transverse momenta

 $P_{h\perp}^2 \ll Q^2$  $p_T^2 \ll Q^2$ 

#### Approssimazioni utilizzate

- 1. One-photon exchange
- 2. Small transverse momenta
- 3. Leading-twist (LT): trascurare potenze di

 $\mathcal{P}_{h\perp} \ll Q^{-}$   $p_T^2 \ll Q^2$ 

 $\underline{M}$ 

#### Approssimazioni utilizzate

- 1. One-photon exchange
- 2. Small transverse momenta
- 3. Leading-twist (LT): trascurare potenze di
- 4. Leading-order (LO): ordine zero in  $\alpha_S^2$



 $\underline{M}$ 

 $\bigcap$ 

#### Approssimazioni utilizzate

- 1. One-photon exchange
- 2. Small transverse momenta
- 3. Leading-twist (LT): trascurare potenze di
- 4. Leading-order (LO): ordine zero in  $\alpha_S^2$

# $\begin{array}{c} P_{h\perp}^2 \ll Q^2 \\ p_T^2 \ll Q^2 \end{array}$

#### Cross-section:

$$\frac{d^{(4)}\sigma}{dx \ dz \ dQ^2 \ dP_{h\perp}^2} = \frac{\pi\alpha^2}{xQ^4} \left[ 1 + \left(1 - \frac{Q^2}{xs}\right) \right] F_{UU,T}(x, z, Q^2; P_{h\perp}^2)$$

#### Unpolarized structure function

 $\frac{M}{Q}$ 

# F<sub>UU,T</sub> e momenti trasversi

$$F_{UU,T}(x, z, Q^2; P_{h\perp}^2) = x \sum_a f_1^a(x, Q^2, p_T^2) \otimes D_1^a(z, Q^2, K_T^2)$$

# F<sub>UU,T</sub> e momenti trasversi

$$F_{UU,T}(x, z, Q^2; P_{h\perp}^2) = x \sum_a f_1^a(x, Q^2, p_T^2) \otimes D_1^a(z, Q^2, K_T^2)$$

Dalla espressione della convoluzione si ricava la relazione tra i momenti trasversi

$$\langle P_{h\perp}^2 \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$$

1)

# F<sub>UU,T</sub> e momenti trasversi

$$F_{UU,T}(x, z, Q^2; P_{h\perp}^2) = x \sum_a f_1^a(x, Q^2, p_T^2) \otimes D_1^a(z, Q^2, K_T^2)$$

1) Dalla espressione della convoluzione si ricava la relazione tra i momenti trasversi

$$\langle P_{h\perp}^2 \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$$

Ma come parametrizzare la parte TMD di queste funzioni?

Parametrizzazione gaussiana

$$f_1^a(x, Q^2, p_T^2) = f_1^a(x, Q^2) \cdot \frac{1}{\pi \langle p_T^2 \rangle} \exp\left\{-\frac{p_T^2}{\langle p_T^2 \rangle}\right\}$$

Parti TMD indipendenti dal flavour

$$D_1^a(z, Q^2, K_T^2) = D_1^a(z, Q^2) \cdot \frac{1}{\pi \langle K_T^2 \rangle} \exp\left\{-\frac{K_T^2}{\langle K_T^2 \rangle}\right\}$$

#### Parametrizzazione gaussiana

$$f_1^a(x, Q^2, p_T^2) = f_1^a(x, Q^2) \cdot \frac{1}{\pi \langle p_T^2 \rangle} \exp\left\{-\frac{p_T^2}{\langle p_T^2 \rangle}\right\}$$

Parti TMD indipendenti dal flavour

$$D_1^a(z,Q^2,K_T^2) = D_1^a(z,Q^2) \cdot \frac{1}{\pi \langle K_T^2 \rangle} \exp\left\{-\frac{K_T^2}{\langle K_T^2 \rangle}\right\}$$

NB: non c'è vera fattorizzazione tra parte collineare e parte TMD:

 $\langle p_T^2 \rangle = \langle p_T^2 \rangle(x, Q^2)$  $\langle K_T^2 \rangle = \langle K_T^2 \rangle(z, Q^2)$ 

• È un **buon modello** per fittare i dati con

$$P_{h\perp}^2 \ll Q^2$$

• È un **buon modello** per fittare i dati con

$$P_{h\perp}^2 \ll Q^2$$

• Ma ha un notevole deficit:

### ASSENZA DELLA FLAVOUR DEPENDENCE

# Ipotesi: flavour-dependence

Essendo le PDF collineari FORTEMENTE dipendenti dal flavour ci aspettiamo che le loro generalizzazioni 3-dim siano altrettanto.

#### Un'ipotesi euristica...

A cui vorremmo conferire



# COMPASS DATA ANALYSIS

## PROGETTO

Esplorazione della dipendenza dal flavour delle TMDs non polarizzate sfruttando gli ampli intervalli cinematici esplorati e l'elevata statistica collezionata da COMPASS



## COMPASS: fit di dati preliminari



# COMPASS: fit di dati preliminari



**Best-fit parameters** 

184 bin cinematici

# COMPASS: fit di dati preliminari



Il carattere gaussiano riflette la flavour independence nell'ipotesi gaussiana **Best-fit parameters** 

184 bin cinematici

10/23/12

Andrea Signori - Università di Pavia
## COMPASS: fit di dati preliminari

 $1 < Q^2 < 10 \text{ GeV}^2$ 

Massa invariante al quadrato del fotone virtuale scambiato

Frazione di impulso collineare portato dal partone colpito

0.0045 < x < 0.12

 $0.05 < z^2 < 0.56$ 

Frazione dell'energia del fotone virtuale portata dall'adrone frammentato

## COMPASS: fit di dati preliminari

$$1 < Q^2 < 10 \,\,\mathrm{GeV}^2$$

$$0.05 < z^2 < 0.56$$

Massa invariante al quadrato del fotone virtuale scambiato

Frazione di impulso collineare portato dal partone colpito

Frazione dell'energia del fotone virtuale portata dall'adrone frammentato

| Bin | $\langle z^2  angle_{h^+}$ | $\langle P_T^2  angle_{h^+}$ | $A_{h^+}$        | $\chi^2_{h^+}/\mathit{ndf}$ | $\langle z^2  angle_{h^-}$ | $\langle P_T^2 \rangle_{h^-}$ | $A_{h^-}$        | $\chi^2_{h^-}/{\it ndf}$ |
|-----|----------------------------|------------------------------|------------------|-----------------------------|----------------------------|-------------------------------|------------------|--------------------------|
| 81  | 0.05                       | $0.21\pm0.003$               | $12.77\pm0.046$  | 7.6                         | 0.05                       | $0.21\pm0.004$                | $11.52\pm0.045$  | 5.2                      |
| 82  | 0.08                       | $0.24\pm0.004$               | $8.35\pm0.034$   | 5.7                         | 0.08                       | $0.23\pm0.004$                | $7.39 \pm 0.033$ | 3.9                      |
| 83  | 0.11                       | $0.26\pm0.005$               | $5.63 \pm 0.027$ | 2.3                         | 0.11                       | $0.25\pm0.005$                | $4.93\pm0.026$   | 4.2                      |
| 84  | 0.14                       | $0.28\pm0.006$               | $4.00\pm0.023$   | 2.6                         | 0.14                       | $0.27\pm0.006$                | $3.39 \pm 0.021$ | 3.4                      |
| 85  | 0.20                       | $0.30\pm0.005$               | $2.50\pm0.013$   | 2.4                         | 0.20                       | $0.28\pm0.005$                | $2.08\pm0.012$   | 5.4                      |
| 86  | 0.30                       | $0.31\pm0.007$               | $1.43\pm0.009$   | 4.6                         | 0.30                       | $0.29\pm0.007$                | $1.20\pm0.009$   | 4.0                      |
| 87  | 0.42                       | $0.31\pm0.008$               | $0.88 \pm 0.007$ | 5.7                         | 0.42                       | $0.28\pm0.009$                | $0.77\pm0.007$   | 7.0                      |
| 88  | 0.56                       | $0.27\pm0.010$               | $0.65\pm0.007$   | 11.0                        | 0.56                       | $0.23\pm0.010$                | $0.60\pm0.007$   | 11.2                     |

Table C.9: Fit results for  $0.018 < x_{Bj} < 0.025$  and  $1 < Q^2 < 1.5 (\text{GeV/c})^2$ . All variables are defined in the text except  $A_{h^{+,-}}$ , the fitted Gaussian amplitude. Only statistical error were used for the fit, this explains the high  $\chi^2$  in the low z intervals were the statistical error is very small.

10/23/12

### PROCEDIMENTO

Fit gaussiani flavour-independent delle molteplicità adroniche preliminari

### PROCEDIMENTO

Fit gaussiani flavour-independent delle molteplicità adroniche preliminari

> Set di pseudo-dati sperimentali (molteplicità adroniche "random")

### PROCEDIMENTO

### Fit gaussiani flavour-independent delle molteplicità adroniche preliminari

### Set di pseudo-dati sperimentali (molteplicità adroniche "random")

### Fit flavour-dependent (non gaussiani) degli pseudo-dati

$$m_{h\pm}(P_{h\perp}^2;Y) = g_{C\pm}(P_{h\perp}^2;Y) + \mathcal{N}(0,\mathcal{E}_{\pm}(P_{h\perp}^2;Y))$$



Rumore gaussiano

con media nulla e deviazione standard

### $\mathcal{E}_{\pm}$

calcolata mediante propagazione degli errori statistici sui parametri di best-fit di COMPASS

 $\mathcal{A}_{\pm}$ ,  $\langle P_{h\perp}^2 \rangle_{\pm}$ 

**Deviazione standard totale** 

$$\mathcal{E}_{\pm}(P_{h\perp}^2;Y) = \sqrt{[b \ \Delta g_{C_{\pm}}(P_{h\perp}^2;Y)]^2 + [\lambda \ g_{C_{\pm}}(P_{h\perp}^2;Y)]^2}$$

**Deviazione standard totale** 

$$\mathcal{E}_{\pm}(P_{h\perp}^2;Y) = \sqrt{[b \ \Delta g_{C_{\pm}}(P_{h\perp}^2;Y)]^2 + [\lambda \ g_{C_{\pm}}(P_{h\perp}^2;Y)]^2}$$

componente statistica

**Deviazione standard totale** 

$$\mathcal{E}_{\pm}(P_{h\perp}^2;Y) = \sqrt{[b \ \Delta g_{C_{\pm}}(P_{h\perp}^2;Y)]^2} + [\lambda \ g_{C_{\pm}}(P_{h\perp}^2;Y)]^2$$

#### componente statistica

Propagazione degli errori sui valori di best-fit per  $\,{\cal A}_{\pm}\,$  e  $\,\langle P^2_{h\perp}
angle_{\pm}\,$ 

$$\Delta g_{C_{\pm}} = \sqrt{\left(\frac{\partial g_{C_{\pm}}}{\partial \mathcal{A}_{\pm}}\right)^2 \left(\Delta \mathcal{A}_{\pm}\right)^2 + \left(\frac{\partial g_{C_{\pm}}}{\partial \langle P_{h\perp}^2 \rangle_{\pm}}\right)^2 \left(\Delta \langle P_{h\perp}^2 \rangle_{\pm}\right)^2}$$

**Deviazione standard totale** 

$$\mathcal{E}_{\pm}(P_{h\perp}^2;Y) = \sqrt{[b \ \Delta g_{C_{\pm}}(P_{h\perp}^2;Y)]^2 + [\lambda \ g_{C_{\pm}}(P_{h\perp}^2;Y)]^2}$$

componente statistica componente sistematica

Propagazione degli errori sui valori di best-fit per  $\,{\cal A}_{\pm}\,$  e  $\,\langle P_{h\perp}^2
angle_{\pm}\,$ 

$$\Delta g_{C_{\pm}} = \sqrt{\left(\frac{\partial g_{C_{\pm}}}{\partial \mathcal{A}_{\pm}}\right)^2 \left(\Delta \mathcal{A}_{\pm}\right)^2 + \left(\frac{\partial g_{C_{\pm}}}{\partial \langle P_{h\perp}^2 \rangle_{\pm}}\right)^2 \left(\Delta \langle P_{h\perp}^2 \rangle_{\pm}\right)^2}$$

## **REPLICHE STATISTICHE**

Il rumore gaussiano viene replicato M volte

• Per ottenere *M set di pseudo-dati* 

## **REPLICHE STATISTICHE**

### Il rumore gaussiano viene replicato M volte

- Per ottenere *M set di pseudo-dati*
- Consente di ottenere distribuzioni per i valori di best-fit

## **REPLICHE STATISTICHE**

### Il rumore gaussiano viene replicato M volte

- Per ottenere *M set di pseudo-dati*
- Consente di ottenere distribuzioni per i valori di best-fit
- È virtualmente possibile valutare il comportamento dei valori di best-fit per varie repliche dell'esperimento

## Minimizzazione del $\chi^2$



## Minimizzazione del $\chi^2$



Andrea Signori - Università di Pavia

## Minimizzazione del $\chi^2$



Andrea Signori - Università di Pavia

### **FLAVOUR ANALYSIS**

### Molteplicità flavour-independent

$$m_{h\pm}(P_{h\perp}^2; x, z, Q^2) = \pi \frac{\sum_a [e_a^2 f_1^a(x, Q^2) D_1^{a \to \pi^{\pm}}(z, Q^2)]}{\sum_a e_a^2 f_1^a(x, Q^2)} \frac{e^{-\frac{P_{h\perp}^2}{z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle}}}{\pi (z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle)}$$

### **FLAVOUR ANALYSIS**

### Molteplicità flavour-independent

$$m_{h_{\pm}}(P_{h\perp}^2; x, z, Q^2) = \pi \frac{\sum_a [e_a^2 f_1^a(x, Q^2) D_1^{a \to \pi^{\pm}}(z, Q^2)]}{\sum_a e_a^2 f_1^a(x, Q^2)} \frac{e^{-\frac{P_{h\perp}^2}{z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle}}}{\pi (z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle)}$$

Generalizziamo questa espressione introducendo una gaussiana per ogni flavour

$$\langle p_{T,\mathrm{up}}^2 \rangle$$
,  $\langle p_{T,\mathrm{down}}^2 \rangle$ ,  $\langle p_{T,\mathrm{sea}}^2 \rangle$ 

(idem per i processi di frammentazione)

Andrea Signori - Università di Pavia

Isospin symmetry and charge-conjugation

 Funzioni di frammentazione simmetriche per simultaneo scambio di quark up e down (isospin symmetry) e coniugazione di carica dell'adrone rilevato (charge-conjugation)

$$D_1^{u \to \pi^+} = D_1^{d \to \pi^-}$$
$$D_1^{u \to \pi^-} = D_1^{d \to \pi^+}$$

# Isospin symmetry and charge-conjugation

- Distinguiamo i processi di frammentazione in:
- 1. Favored:  $D_1^{u \to \pi^+} = D_1^{d \to \pi^-} \doteq D_1^{\text{fav}}$   $D_1^{\overline{u} \to \pi^-} = D_1^{\overline{d} \to \pi^+} \doteq D_1^{\text{fav}}$

$$D_1^{u \to \pi^-} = D_1^{d \to \pi^+} \doteq D_1^{\text{unf}} D_1^{\bar{u} \to \pi^+} = D_1^{\bar{d} \to \pi^-} \doteq D_1^{\text{unf}}$$

 $\pi^+(u\bar{d})$ ,  $\pi^-(\bar{u}d)$ 

A seconda che Il partone Che frammenta sia un quark di valenza dell'adrone Rivelato o meno

$$\begin{split} m_{\pi^+}(x,z,Q^2,P_{h\perp}^2) &= \frac{\pi n}{\sum_a e_a^2 f_1^a(x,Q^2)} \cdot \\ & \cdot \left\{ e_a^2 f_1^{u_v}(x,Q^2) D_1^{fav}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + F}}}{\pi(z^2 u + F)} + \right. \\ & + e_a^2 f_1^{d_v}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 d + U)} + \\ & + e_a^2 f_1^{d_v}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{2^2 u + U}}}}{\pi(z^2 s + U)} + \\ & + e_a^2 f_1^{\bar{u}}(x,Q^2) D_1^{unf}(x,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{$$

$$\begin{split} (x,z,Q^2,P_{h\perp}^2) &= \frac{\pi n}{\sum_a e_a^2 f_1^a(x,Q^2)} \cdot \\ & \cdot \left\{ e_u^2 f_1^{uv}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 u + U}}}{\pi(z^2 u + U)} + \right. \\ & + e_d^2 f_1^{dv}(x,Q^2) D_1^{fav}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 d + F}}}{\pi(z^2 d + F)} + \\ & + e_{st}^2 f_1^{stv}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s + U}}}{\pi(z^2 s + U)} + \\ & + e_u^2 f_1^{u-uv}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s + U}}}{\pi(z^2 s + U)} + \\ & + e_u^2 f_1^{\bar{u}}(x,Q^2) D_1^{fav}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s + U}}}{\pi(z^2 s + U)} + \\ & + e_u^2 f_1^{\bar{u}}(x,Q^2) D_1^{fav}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s + F}}}{\pi(z^2 s + F)} + \end{split}$$

$$+ e_d^2 f_1^{d-d_v}(x,Q^2) D_1^{fav}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s+F}}}{\pi(z^2 s+F)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2) D_1^{unf}(z,Q^2) \frac{e^{-\frac{-P_{h\perp}^2}{z^2 s+U}}}{\pi(z^2 s+U)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2) \frac{e^{-\frac{P_{h\perp}^2}{z^2 s+U}}}{\pi(z^2 s+U)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2) \frac{e^{-\frac{P_{h\perp}^2}{z^2 s+U}}}{\pi(z^2 s+U)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2) \frac{e^{-\frac{P_{h\perp}^2}{z^2 s+U}}}{\pi(z^2 s+U)} + e_{\bar{d}}^2 f_1^{\bar{d}}(x,Q^2)}$$

$$+ e_{st}^{2} f_{1}^{st-st_{v}}(x,Q^{2}) D_{1}^{unf}(z,Q^{2}) \frac{e^{-\frac{-P_{h\perp}^{2}}{z^{2}s+U}}}{\pi(z^{2}s+U)} + e_{\overline{st}}^{2} f_{1}^{\overline{st}}(x,Q^{2}) D_{1}^{unf}(z,Q^{2}) \frac{e^{-\frac{-P_{h\perp}^{2}}{z^{2}s+U}}}{\pi(z^{2}s+U)} \bigg\} .$$
57

Andrea Signori - Università di Pavia

10/23/12

## MOMENTI TRASVERSI E CINEMATICA

 $\lim_{x \to 0} \langle p_{T,a}^2 \rangle(x,Q^2) = 0$  $x \rightarrow 1$ 

 $\lim_{\substack{z \to 0 \\ z \to 1}} \langle K_{T,j}^2 \rangle(z,Q^2) = 0$ 

### MOMENTI TRASVERSI E CINEMATICA

$$\lim_{\substack{x \to 0 \\ x \to 1}} \langle p_{T,a}^2 \rangle(x, Q^2) = 0$$

$$\lim_{\substack{z \to 0 \\ z \to 1}} \langle K_{T,j}^2 \rangle(z,Q^2) = 0$$

$$\langle p_{T,a}^2 \rangle(x,Q^2) \sim 1 + \ln \frac{Q^2}{Q_0^2}$$

TMD evolution

$$\langle K_{T,j}^2 \rangle(z,Q^2) \sim 1 + \ln \frac{Q^2}{Q_0^2}$$

### MOMENTI TRASVERSI E CINEMATICA

$$\langle p_{T,a}^2 \rangle(x,Q^2) = N_a x^{\alpha_a} (1-x)^{\beta_a} \left[ 1 + \ln\left(\frac{Q^2}{Q_0^2}\right) \right]$$
Parametri di best-fit
$$Q_0^2 = 1 \text{ GeV}^2$$

$$\langle K_{T,j}^2 \rangle(z,Q^2) = N_j z^{\alpha_j} (1-z)^{\beta_j} \left[ 1 + \ln\left(\frac{Q^2}{Q_0^2}\right) \right]$$

### Fit combinato su 84 bin cinematici forniti da COMPASS, per $\pi^+$ e $\pi^ 1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$

# **Fit combinato** su 84 bin cinematici forniti da COMPASS, per $\pi^+$ e $\pi^-$

 $184 \rightarrow 84 \text{ bin}$ <br/>selection criterion<br/> $\chi^2/\text{dof }_{Raj} < 4$ 

 $1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$ 

## **Fit combinato** su 84 bin cinematici forniti da COMPASS, per $\pi^+$ e $\pi^-$



 $1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$ 

Errore statistico: raddoppiato rispetto al valore calcolato da COMPASS

# **Fit combinato** su 84 bin cinematici forniti da COMPASS, per $\pi^+ e \pi^-$

 $184 \rightarrow 84 \text{ bin}$ <br/>selection criterion<br/> $\chi^2/\text{dof }_{Raj} < 4$ 

 $1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$ 

Errore statistico: raddoppiato rispetto al valore calcolato da COMPASS Si introduce un errore sistematico pari al **10%** del valore della molteplicità

# **Fit combinato** su 84 bin cinematici forniti da COMPASS, per $\pi^+ e \pi^-$

 $184 \rightarrow 84 \text{ bin}$ <br/>selection criterion<br/> $\chi^2/\text{dof }_{Raj} < 4$ 

 $1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$ 

Errore statistico: raddoppiato rispetto al valore calcolato da COMPASS

Si introduce un errore sistematico pari al 10% del valore della molteplicità

$$\mathcal{E}_{\pm}(P_{h\perp}^{2};Y) = \sqrt{[b]\Delta g_{C_{\pm}}(P_{h\perp}^{2};Y)]^{2} + [\lambda g_{C_{\pm}}(P_{h\perp}^{2};Y)]^{2}}$$

$$b = 2$$
$$\lambda = 0.1$$

### RISULTATI





sea 
$$\approx$$
 up > down

### Comportamento globale in x e Q<sup>2</sup>

$$\begin{array}{l} 2.5 < Q^2 < 3.5 \ {\rm GeV}^2 \ , \ 0.04 < x < 0.07 \\ & \left< p_{T,{\rm up}}^2 \right> = 0.60 \pm 0.53 \ {\rm GeV}^2 \\ & \left< p_{T,{\rm down}}^2 \right> = 0.56 \pm 0.99 \\ & \left< p_{T,{\rm sea}}^2 \right> = 0.69 \pm 0.58 \end{array}$$



Andrea Signori - Università di Pavia



sea 
$$\approx$$
 up > down

### Comportamento globale in x e Q<sup>2</sup>




$$\langle K_{T,\text{fav}}^2 \rangle < \langle K_{T,\text{unf}}^2 \rangle$$
 for low  $z$  values  
 $\langle K_{T,\text{fav}}^2 \rangle > \langle K_{T,\text{unf}}^2 \rangle$  for high  $z$  values

| $\langle z^2 \rangle$ | $\langle K_{T,fav}^2 \rangle \; [\text{GeV}^2]$ | $\langle K_{T,unf}^2 \rangle \; [\text{GeV}^2]$ |
|-----------------------|-------------------------------------------------|-------------------------------------------------|
| 0.08                  | $0.19\pm0.08$                                   | $0.21\pm0.05$                                   |
| 0.14                  | $0.24\pm0.07$                                   | $0.23\pm0.10$                                   |
| 0.56                  | $0.20\pm0.15$                                   | $0.14\pm0.15$                                   |

Table 4.7: Mean values and standard deviations for  $\langle K_T^2 \rangle(z, Q^2)$  for different z values, with  $3.5 < Q^2 < 6$ .

10/23/12



$$\chi^2/dof < 5$$

$$\langle p_{T,\mathrm{up}}^2 \rangle \neq \langle p_{T,\mathrm{down}}^2 \rangle \neq \langle p_{T,\mathrm{sea}}^2 \rangle \\ \langle K_{T,\mathrm{fav}}^2 \rangle \neq \langle K_{T,\mathrm{unf}}^2 \rangle$$



$$\chi^2/dof < 5$$

$$\langle p_{T,\mathrm{up}}^2 \rangle \neq \langle p_{T,\mathrm{down}}^2 \rangle \neq \langle p_{T,\mathrm{sea}}^2 \rangle$$
  
 $\langle K_{T,\mathrm{fav}}^2 \rangle \neq \langle K_{T,\mathrm{unf}}^2 \rangle$ 



$$\chi^2/dof < 5$$

$$\langle p_{T,\mathrm{up}}^2 \rangle \neq \langle p_{T,\mathrm{down}}^2 \rangle \neq \langle p_{T,\mathrm{sea}}^2 \rangle$$
  
 $\langle K_{T,\mathrm{fav}}^2 \rangle \neq \langle K_{T,\mathrm{unf}}^2 \rangle$ 



$$\chi^2/dof < 5$$

$$\langle p_{T,\mathrm{up}}^2 \rangle \neq \langle p_{T,\mathrm{down}}^2 \rangle \neq \langle p_{T,\mathrm{sea}}^2 \rangle$$
  
 $\langle K_{T,\mathrm{fav}}^2 \rangle \neq \langle K_{T,\mathrm{unf}}^2 \rangle$ 



Si fittano due set di *dati differenti* con la *stessa funzione* 

$$\langle p_{T,\mathrm{up}}^2 \rangle = \langle p_{T,\mathrm{down}}^2 \rangle = \langle p_{T,\mathrm{sea}}^2 \rangle$$
  
 $\langle K_{T,\mathrm{fav}}^2 \rangle = \langle K_{T,\mathrm{unf}}^2 \rangle$ 



Si fittano due set di *dati differenti* con la *stessa funzione* 

$$\langle p_{T,\mathrm{up}}^2 \rangle = \langle p_{T,\mathrm{down}}^2 \rangle = \langle p_{T,\mathrm{sea}}^2 \rangle$$
  
 $\langle K_{T,\mathrm{fav}}^2 \rangle = \langle K_{T,\mathrm{unf}}^2 \rangle$ 



$$sea = up = down$$
, fav = unf

$$3.5 < Q^2 < 6 \text{ GeV}^2$$
,  $0.07 < x < 0.12$ ,  $\langle z^2 \rangle = 0.11$ 

$$\langle p_T^2 \rangle = 0.76 \pm 0.15$$

Valori medi ed errori statistici

 $\langle K_T^2 \rangle = 0.16 \pm 0.03$ 

### **ALTRE ANALISI**





"Transverse momentum dependence of semi-inclusive pion production." Physics Letters B 665 (2008) 20–25





"Transverse momentum dependence of semi-inclusive pion production." Physics Letters B 665 (2008) 20–25

 $1.5 < Q^2 < 10 \text{ GeV}^2$ 0.012 < x < 0.12 $0.08 < \langle z^2 \rangle < 0.56$  $P_{h\perp}^2 < 0.7 \text{ GeV}^2$ 





 $2 < Q^2 < 4 \text{ GeV}^2$ 0.2 < x < 0.50.3 < z < 1 $P_{h\perp}^2 < 0.2 \ {\rm GeV}^2$ 





"Transverse momentum dependence of semi-inclusive pion production." Physics Letters B 665 (2008) 20–25

 $\langle p_{T,\mathrm{up}}^2 \rangle = -0.01 \pm 0.04 \ \mathrm{GeV}^2$ 





"Transverse momentum dependence of semi-inclusive pion production." Physics Letters B 665 (2008) 20–25

$$\langle p_{T,up}^2 \rangle = -0.01 \pm 0.04 \text{ GeV}^2$$
  
 $\langle p_{T,down}^2 \rangle = 0.22 \pm 0.13 \text{ GeV}^2$ 





"Transverse momentum dependence of semi-inclusive pion production." Physics Letters B 665 (2008) 20–25

$$\langle p_{T,up}^2 \rangle = -0.01 \pm 0.04 \text{ GeV}^2$$
$$\langle p_{T,down}^2 \rangle = 0.22 \pm 0.13 \text{ GeV}^2$$

Incompatibili in una deviazione standard





# QCD su reticolo

"Exploring quark transverse momentum distributions with lattice QCD." Phys.Rev. D83 (2011) 094507



# QCD su reticolo

"Exploring quark transverse momentum distributions with lattice QCD." Phys.Rev. D83 (2011) 094507

#### 1. Valori integrati su x



# QCD su reticolo

"Exploring quark transverse momentum distributions with lattice QCD." Phys.Rev. D83 (2011) 094507

#### 1. Valori integrati su x

#### 2. La dipendenza dalla scala energetica Q<sup>2</sup> non è definita



# QCD su reticolo

"Exploring quark transverse momentum distributions with lattice QCD." Phys.Rev. D83 (2011) 094507

 $\langle p_{T,up} \rangle = 0.394 \pm 0.004 \pm 0.027 \text{ GeV}$ 



# QCD su reticolo

"Exploring quark transverse momentum distributions with lattice QCD." Phys.Rev. D83 (2011) 094507

$$\langle p_{T,up} \rangle = 0.394 \pm 0.004 \pm 0.027 \text{ GeV}$$
  
 $\langle p_{T,down} \rangle = 0.405 \pm 0.005 \pm 0.027 \text{ GeV}$ 



$$\langle p_{T,up} \rangle = 0.394 \pm 0.004 \pm 0.027 \text{ GeV}$$
  
 $\langle p_{T,down} \rangle = 0.405 \pm 0.005 \pm 0.027 \text{ GeV}$ 

Compatibili in una deviazione standard



I risultati della <mark>presente</mark> e delle <mark>precedenti</mark> analisi sono in **disaccordo**, ma... :

I risultati della presente e delle precedenti analisi sono in <mark>disaccordo</mark>, ma... :

1. Gli **intervalli cinematici** esplorati nell'analisi dei dati di COMPASS sono più ampi

I risultati della presente e delle precedenti analisi sono in <mark>disaccordo</mark>, ma... :

- 1. Gli **intervalli cinematici** esplorati nell'analisi dei dati di COMPASS sono più ampi
- 2. I risultati correnti hanno carattere statistico

I risultati della <mark>presente</mark> e delle <mark>precedenti</mark> analisi sono in **disaccordo**, ma... :

- 1. Gli **intervalli cinematici** esplorati nell'analisi dei dati di COMPASS sono più ampi
- 2. I risultati correnti hanno carattere statistico
- Per il momento il fit è basato sui fit gaussiani dei dati preliminari di COMPASS

• COMPASS : release finale dei dati ( con PID ? )

• COMPASS : release finale dei dati ( con PID ? )

- HERMES :
- 1. Particle identification system: sensibilità ai kaoni
- 2. Scattering su *deutone*: maggiore sensibilità al down

• COMPASS : release finale dei dati ( con PID ? )

- HERMES :
- 1. Particle identification system: sensibilità ai kaoni
- 2. Scattering su *deutone*: maggiore sensibilità al down

• Jefferson Lab: dati con alta luminosità



$$Q^2 = xys$$

### **1.Jefferson Lab**: $\sqrt{s} = 5 \text{ GeV}$ : low $s \Longrightarrow \text{high } x$

$$Q^2 = xys$$

**1.Jefferson Lab**:  $\sqrt{s} = 5 \text{ GeV}$ : low  $s \Longrightarrow \text{high } x$ 

**2.HERMES:**  $\sqrt{s} = 7 \text{ GeV}$ : medium  $s \Longrightarrow$  medium x

$$Q^2 = xys$$

- **1.Jefferson Lab**:  $\sqrt{s} = 5 \text{ GeV}$ : low  $s \Longrightarrow \text{high } x$
- 2.HERMES:  $\sqrt{s} = 7 \text{ GeV}$ : medium  $s \Longrightarrow$  medium x3.COMPASS:  $\sqrt{s} = 18 \text{ GeV}$ : high  $s \Longrightarrow \text{low } x$

$$Q^2 = xys$$

- **1.Jefferson Lab**:  $\sqrt{s} = 5 \text{ GeV}$ : low  $s \Longrightarrow \text{high } x$
- **2.HERMES:**  $\sqrt{s} = 7 \text{ GeV}$ : medium  $s \Longrightarrow$  medium x
- **3.COMPASS:**  $\sqrt{s} = 18 \text{ GeV}$ : high  $s \Longrightarrow \text{low } x$

4. (future) EIC (Electron-Ion Collider):  $\sqrt{s} = 20 - 150 \text{ GeV}$ very high  $s \Longrightarrow$  very low x
# **PROGETTI FUTURI**

$$Q^2 = xys$$

- **1.Jefferson Lab**:  $\sqrt{s} = 5 \text{ GeV}$ : low  $s \Longrightarrow \text{high } x$
- **2.HERMES:**  $\sqrt{s} = 7 \text{ GeV}$ : medium  $s \Longrightarrow$  medium x
- **3.COMPASS:**  $\sqrt{s} = 18 \text{ GeV}$ : high  $s \Longrightarrow \text{low } x$

4. (future) EIC (Electron-Ion Collider):  $\sqrt{s} = 20 - 150 \text{ GeV}$ 

Quark del mare e gluoni

Andrea Signori - Università di Pavia

very high  $s \Longrightarrow$  very low x

 L'ipotesi gaussiana con flavour-dependence fitta meglio i dati dello stesso modello flavourindependent

- L'ipotesi gaussiana con flavour-dependence fitta meglio i dati dello stesso modello flavourindependent
- Il valore medio del momento quadratico medio del quark up è più grande di quello relativo al quark down

- L'ipotesi gaussiana con flavour-dependence fitta meglio i dati dello stesso modello flavourindependent
- Il valore medio del momento quadratico medio del quark up è più grande di quello relativo al quark down
- Introducendo la flavour-dependence la molteplicità adronica (ovvero la funzione di struttura non polarizzata) perde il carattere gaussiano

# Backup slides

# Short-FUTURE PLANS

- Implementare criterio che stabilisca un limite inferiore per i valori di  $\langle p_T^2\rangle$  ,  $\,\langle K_T^2\rangle$ 

• Previsione per il deuterio

 Inserire correttamente l'effetto delle equazioni di evoluzione TMD

### JEFFERSON LAB

| $x_B$        | $\langle p$           | $\left  {{\rm GeV^2}} \right $    | $\langle p_{T,down}^2 \rangle \; [\text{GeV}^2]$ | $\langle p_{T,sea}^2 \rangle \; [\text{GeV}^2]$ |
|--------------|-----------------------|-----------------------------------|--------------------------------------------------|-------------------------------------------------|
| 0.018 - 0.02 | 25 1                  | $1.09 \pm 1.28$                   | $0.32 \pm 1.04$                                  | $1.46 \pm 1.09$                                 |
| 0.025 - 0.0  | )4 (                  | $0.94 \pm 0.99$                   | $0.81 \pm 1.59$                                  | $1.21\pm0.90$                                   |
| 0.07 - 0.12  | 2 (                   | $0.45\pm0.29$                     | $0.36 \pm 0.50$                                  | $0.40\pm0.38$                                   |
|              | $\langle z^2 \rangle$ | $\langle K_{T,fav}^2 \rangle$ [Ge | $eV^2$ ] $\langle K^2_{T,unf} \rangle$ [Ge       | $eV^2$ ]                                        |
|              | 0.08                  | $0.19 \pm 0.0$                    | $0.21 \pm 0.0$                                   | 5                                               |
|              | 0.14                  | $0.24 \pm 0.0$                    | $0.23 \pm 0.1$                                   | 0                                               |
|              | 0.56                  | $0.20\pm0.1$                      | 5 $0.14 \pm 0.14$                                | 5                                               |

 $3.5 < Q^2 < 6 \text{ GeV}^2$ 



$$\begin{split} \langle p_{T,up}^2 \rangle &= -0.01 \pm 0.04 \ \mathrm{GeV^2} \\ \langle p_{T,down}^2 \rangle &= 0.22 \pm 0.13 \ \mathrm{GeV^2} \end{split}$$

$$\langle K_{T,fav}^2 \rangle = 0.23 \pm 0.04 \ \text{GeV}^2$$

$$\langle K_{T,unf}^2 \rangle = 0.19 \pm 0.04 \ \text{GeV}^2$$

Jefferson Lab

$$2 < Q^2 < 4 \text{ GeV}^2$$
  
 $0.2 < x < 0.5$   
 $0.3 < z < 1$   
 $P_{h\perp}^2 < 0.2 \text{ GeV}^2$ 

### LATTICE QCD

| $x_B$                                                                                                             | $\langle p_{T,up}^2 \rangle \; [\text{GeV}^2]$ | $\langle p_{T,down}^2 \rangle ~[{\rm GeV^2}]$ | $\langle p_{T,sea}^2 \rangle$ [GeV <sup>2</sup> ] |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--|--|
| 0.018 - 0.025                                                                                                     | $5 1.09 \pm 1.28$                              | $0.32 \pm 1.04$                               | $1.46 \pm 1.09$                                   |  |  |
| 0.025 - 0.04                                                                                                      | $0.94\pm0.99$                                  | $0.81 \pm 1.59$                               | $1.21\pm0.90$                                     |  |  |
| 0.07 - 0.12                                                                                                       | $0.45\pm0.29$                                  | $0.36\pm0.50$                                 | $0.40\pm0.38$                                     |  |  |
| $\langle z^2 \rangle  \langle K_{T,fav}^2 \rangle \ [\text{GeV}^2]  \langle K_{T,unf}^2 \rangle \ [\text{GeV}^2]$ |                                                |                                               |                                                   |  |  |
| (                                                                                                                 | $0.08 		0.19 \pm 0.0$                          | $0.21 \pm 0.0$                                | 5                                                 |  |  |
| (                                                                                                                 | $0.14  0.24 \pm 0.0$                           | $0.23 \pm 0.1$                                | 0                                                 |  |  |
| (                                                                                                                 | $0.56 	0.20 \pm 0.1$                           | 5 $0.14 \pm 0.1$                              | 5                                                 |  |  |

 $3.5 < Q^2 < 6 \text{ GeV}^2$ 



 $\langle p_{T,up} \rangle = 0.394 \pm 0.004 \pm 0.027 \text{ GeV}$  $\langle p_{T,down} \rangle = 0.405 \pm 0.005 \pm 0.027 \text{ GeV}$ 

QCD su reticolo

# Teoria: TMDs in SIDIS

 $d^{(n)}\sigma \sim W^{\mu\nu}L_{\mu\nu}$ 

Tensore adronico



Funzione "soft" Che descrive il processo di adronizzazione

 $parton \rightarrow hadron$ 

Funzione "soft" che descrive La densità di presenza dei partoni nel nucleone  $\mathrm{hadron} 
ightarrow \mathrm{parton}$  Interpretazione attraverso il Parton model del tensore adronico



## SIDIS at COMPASS

#### cinematica

- x : frazione di impulso collineare dell'adrone genitore trasportata dal partone
- $\mathcal{Z}$  : frazione di energia del fotone virtuale portata dall'adrone frammentante
- $Q^2$  : massa invariante al quadrato del fotone virtuale scambiato

## Flavour independent Gaussian ansatz

• pT resummation effects



#### Flavour independent Gaussian ansatz

• Orbital angular momentum effects

$$f_1(x, p_T^2) = |\psi_{s-\text{wave}}|^2 + |\psi_{p-\text{wave}}|^2 + \dots$$

At low 
$$p_T^2$$
,  $|\psi_{p-\text{wave}}|^2 \sim p_T^2$ 

Because of their non-vanishing value in the limit of zero transverse momentum Gaussian TMDs would agree only with s-wave functions

# Flavour independent Gaussian ansatz

• Flavour dependence

