Transverse structure of the nucleon Part 4: Advanced topics

The gauge link

Need of a gauge link

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P, S | \ \overline{\psi}_j(0) \ \psi_i(\xi) | P, S \rangle$$
$$\psi(\xi) \to e^{i\alpha(\xi)} \ \psi(\xi)$$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \; e^{ip \cdot \xi} \langle P, S | \,\overline{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, | P, S \rangle$$

$$U(\xi_1, \xi_2) \to e^{i\alpha(\xi_1)} U(\xi_1, \xi_2) e^{-i\alpha(\xi_2)}.$$

$$U_{[a,b]} = \mathcal{P} \exp\left[-ig \int_{a}^{b} d\eta^{\mu} A_{\mu}(\eta)\right]$$

Birth of the gauge link

(a)

$$\begin{split} 2MW^{(a)}_{\mu\nu} &\sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not\!\!\!\!/ - \not\!\!\!\!/ + m}{(k-l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) | P, S \rangle \Big|_{\eta^{+} = 0} \\ &\quad i \frac{\not\!\!\!\!\!\!\!\!\!/ - \not\!\!\!\!\!\!\!\!/ + m}{(k-l)^{2} - m^{2} + i\epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2l^{+}k^{-} + i\epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+} + i\epsilon} \\ &\quad 2MW^{(a)}_{\mu\nu} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(ig) \frac{A^{+}(\eta)}{-l^{+} + i\epsilon} \psi(\xi) | P, S \rangle \Big|_{\eta^{+} = 0} \\ &\quad 2MW^{(a)}_{\mu\nu} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-ig) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d}\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle \Big|_{\eta^{+} = 0} \\ \end{split}$$

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

Birth of the gauge link

0000

$$2MW^{\mu\nu}(q,P,S) \approx \sum_{q} e_q^2 \frac{1}{2} \operatorname{Tr} \left[\Phi(x_B,S) \gamma^{\mu} \gamma^{+} \gamma^{\nu} \right].$$
$$\Phi^{(a)}(x,S) \sim \left\langle P,S \right| \overline{\psi}(0) \left(-ig \right) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d}\eta^{-} A^{+}(\eta) \psi(\xi) \left| P,S \right\rangle$$

Shape of the gauge link

 $\Phi(x,S) \sim \left\langle P, S \right| \overline{\psi}(0) U_{[0,\infty^{-}]} U_{[\infty^{-},\xi^{-}]} \psi(\xi) \left| P, S \right\rangle$

Gauge link in Drell-Yan

$$2MW^{(a)}_{\mu\nu} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \left. \frac{\not k - \not l + m}{(k-l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) | P, S \rangle \right|_{\eta^{+} = 0}$$

Collins, PLB 536 (02)

Gauge link for TMDs

Bomhof, Mulders, Pijlman, PLB 596 (04)

High and low transverse momentum

SIDIS once again

- Q = photon virtuality
- M = hadron mass
- $P_{h\perp}$ = hadron transverse momentum

 $q_T^2 \approx P_{h\perp}^2 / z^2$

Low and high transverse momentum

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

Example of low-transverse momentum result

$$F_{UU,T} = \mathcal{C}\big[f_1 D_1\big]$$

$$\mathcal{C}[wfD] = \sum_{a} x e_a^2 \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{k}_T \, \delta^{(2)} \left(\boldsymbol{p}_T - \boldsymbol{k}_T - \boldsymbol{P}_{h\perp}/z \right) w(\boldsymbol{p}_T, \boldsymbol{k}_T) \, f^a(x, p_T^2) \, D^a(z, k_T^2),$$

Low and high transverse momentum

Example of high-transverse momentum result

Low and high transverse momentum

$F_{UU,T}$ structure function

The leading high- q_T part is just the "tail" of the leading low- q_T part

Collins, Soper, Sterman, NPB250 (85)

Perturbative corrections to TMDs

Other TMDs

 $xf^{\perp} \sim \frac{1}{p_T^2} \alpha_s \mathcal{F}[f_1],$ $f_{1T}^{\perp} \sim \frac{M^2}{\boldsymbol{p}_T^4} \,\alpha_s \,\mathcal{F}\big[f_{1T}^{\perp(1)},\ldots\big]\,,$ $x f_L^{\perp} \sim \frac{1}{p_T^2} \alpha_s^2 \mathcal{F}[g_1],$ $h_{1T}^{\perp} \sim \frac{M^2}{\boldsymbol{p}_T^4} \alpha_s^2 \mathcal{F}[h_1],$

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

Expected mismatch

The leading terms in the two expansions CANNOT and MUST not match!

Two distinct mechanisms are involved

$\cos 2\Phi$ asymmetry

see also Barone, Prokudin, Ma 0804.3024

All structure functions

	low- q_T calculation			high- q_T calculation				
observable	twist	order	power	twist	order	power	powers match	
$F_{UU,T}$	2	α_s	$1/q_T^2$	2	α_s	$1/q_T^2$	yes	
$F_{UU,L}$	4			2	α_s	$1/Q^2$?	
$F_{UU}^{\cos\phi_h}$	3	α_s	$1/(Qq_T)$	2	α_s	$1/(Qq_T)$	yes	
$F_{UU}^{\cos 2\phi_h}$	2	α_s	$1/q_T^4$	2	α_s	$1/Q^2$	no	
$F_{LU}^{\sin\phi_h}$	3	α_s^2	$1/(Qq_T)$	2	α_s^2	$1/(Qq_T)$	yes	<u> </u>]
$F_{UL}^{\sin\phi_h}$	3	α_s^2	$1/(Qq_T)$					
$F_{UL}^{\sin 2\phi_h}$	2	α_s	$1/q_T^4$					tures!
F_{LL}	2	α_s	$1/q_T^2$	2	α_s	$1/q_T^2$	yes	conjecture
$F_{LL}^{\cos\phi_h}$	3	α_s	$1/(Qq_T)$	2	α_s	$1/(Qq_T)$	yes	
$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2	α_s	$1/q_T^3$	3	α_s	$1/q_T^3$	yes —	
$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4			3	α_s	$1/(Q^2 q_T)$?	
$F_{UT}^{\sin(\phi_h + \phi_S)}$	2	α_s	$1/q_{T}^{3}$	3	α_s	$1/q_T^3$	yes	
$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2	α_s^2	$1/q_T^3$	3	α_s	$1/(Q^2 q_T)$	no	
$F_{UT}^{\sin\phi_S}$	3	α_s	$1/(Q q_T^2)$	3	α_s	$1/(Qq_T^2)$	yes	
$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3	α_s	$1/(Qq_T^2)$	3	α_s	$1/(Q q_T^2)$	yes ——	
$F_{LT}^{\cos(\phi_h - \phi_S)}$	2	α_s	$1/q_T^3$					
$F_{LT}^{\cos\phi_S}$	3	α_s	$1/(Q q_T^2)$					
$F_{LT}^{\cos(2\phi_h - \phi_S)}$	3	α_s	$1/(Q q_T^2)$					

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

Evolution equations

Collinear evolution of transversity

Fig. 19. Comparison of the Q^2 -evolution of $\Delta_T u(x, Q^2)$ and $\Delta u(x, Q^2)$ at (a) LO and (b) NLO, from [72].

Barone, Drago, Ratcliffe, PR 359 (2002) Hayashigaki, Kanazawa, Koike, PRD56 (97)

TMDs evolution

Perturbative corrections to TMDs

Resummation results

Example of resummation effects

Leading-log formula

Ellis, Veseli, NPB 511 (98)

$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[f_1^a(x;[q_T^2]) D_1^a(z;[q_T^2]) e^{-S} \left(1 - e^{-S_{NP}}\right) \right]$$

$$S(q_T^2, Q^2) = -\int_{q_T^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} 2C_F \log \frac{Q^2}{\mu^2}$$

$$\alpha_s(\mu^2) = \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)}$$

Nonperturbative part

Kulesza, Stirling, JHEP 12 (03)

$$S_{NP} = -\frac{q_T^2}{\langle q_T^2 \rangle}$$
$$\frac{1}{\langle q_T^2 \rangle} = 0.20 + 0.95 \log\left(\frac{Q}{3.2}\right) + 1.56 \log\left(\frac{\sqrt{s}}{19.4}\right)$$

Leading-log evolution

Evolution of Sivers function

$$f_1^{\rm NS}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{p_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\rm NS}(x) + \left(P_{qq} \otimes f_1^{\rm NS} \right) \right]$$

$$\frac{\boldsymbol{p}_T^2}{2M^2} f_{1T}^{\perp \text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{M}{\boldsymbol{p}_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_{1T}^{\perp(1)\text{NS}}(x) + \dots \right]$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \dots \right]$$

$$\frac{q_T}{M} F_{UT,T}^{\sin(\phi_h - \phi_s)} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[-f_{1T}^{\perp(1)a}(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \dots \right]$$

Collins asymmetry, *b* space analysis

D. Boer, NPB 806 (08)

FIG. 6: The asymmetry factor $\mathcal{A}(Q_T)$ at Q = 10 GeV (solid curve) and the tree level quantity $\mathcal{A}^{(0)}(Q_T)$ using $R_u^2 = 1 \text{ GeV}^{-2}$ and $R^2/R_u^2 = 3/2$. Both factors are given in units of M^2 .

FIG. 5: The asymmetry factor $\mathcal{A}(Q_T)$ (in units of M^2) at Q = 10 GeV and Q = 90 GeV. The solid curves are obtained with the method explained in the text; the dashed-dotted curves are from the earlier analysis of Ref. [64].

Evolution of transverse moment of Sivers function

Vogelsang, Yuan, talk at SPIN08 Kang, Qiu, arXiv:0811.3101 [hep-ph]

$$\frac{\partial f_1^{\rm NS}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_1^{\rm NS}(\xi,\mu^2) P_{qq}(z) \Big|_{z=x/\xi}$$

$$\begin{aligned} \frac{\partial \mathcal{T}_{q,F}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \Big\{ P_{qq}(z) \, \mathcal{T}_{q,F}(\xi,\xi,\mu_F) \\ &\quad + \frac{C_A}{2} \left[\frac{1+z^2}{1-z} \left[\mathcal{T}_{q,F}(\xi,x,\mu_F) - \mathcal{T}_{q,F}(\xi,\xi,\mu_F) \right] + z \, \mathcal{T}_{q,F}(\xi,x,\mu_F) \right] \\ &\quad + \frac{C_A}{2} \left[\mathcal{T}_{\Delta q,F}(x,\xi,\mu_F) \right] \Big\}, \end{aligned}$$

FIG. 12: Twist-3 up-quark-gluon correlation $T_{u,F}(x, x, \mu_F)$ as a function of x at $\mu_F = 4$ GeV (left) and $\mu_F = 10$ GeV (right). The factorization scale dependence is a solution of the flavor non-singlet evolution equation in Eq. (99). Solid and dotted curves correspond to $\sigma = 1/4$ and 1/8, while the dashed curve is obtained by keeping only the DGLAP evolution kernel $P_{qq}(z)$ in Eq. (99).

Factorization and universality

Different processes

k₇ factorization

$$F_{UU,T}(x, z, P_{h\perp}^2, Q^2) = C[f_1D_1]$$

$$= \int d^2 p_T d^2 k_T d^2 l_T \,\delta^{(2)}(p_T - k_T + l_T - P_{h\perp}/z)$$

$$x \sum_a e_a^2 f_1^a(x, p_T^2, \mu^2) D_1^a(z, k_T^2, \mu^2) U(l_T^2, \mu^2) H(Q^2, \mu^2)$$

$$TMD PDF TMD FF Soft factor Hard part$$

$$Collins, Soper, NPB 193 (81)$$

$$Ji, Ma, Yuan, PRD 71 (05)$$

Consequences

- The real part of the gauge link remains unchanged
- The imaginary part changes sign
- Observables sensitive to the imaginary part (e.g. single spin asymmetries) acquire an extra minus sign (generalization of universality)

$$d\sigma_{DIS} = H_{DIS} \otimes f \qquad \qquad d\sigma_{DY} = H_{DY} \otimes f$$

 $d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = K_{DIS} \otimes g \qquad \qquad d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = -K_{DY} \otimes g$

Generalized universality

Hadrons to hadrons

A slightly more complex example

Q_1	g_2	g_2
$\frac{g_1}{[-l^+ + i\epsilon]}$	$\overline{[-l^+ + i\epsilon]}$	$\overline{\left[-l^++i\epsilon ight]}$

Consequences

$$\frac{g_1}{[-l^+ + i\epsilon]} + \frac{g_2}{[-l^+ + i\epsilon]} - \frac{g_2}{[-l^+ + i\epsilon]} = -i\pi(2g_2 + g_1)\delta(l^+) - PV\frac{g_1}{l^+}$$

- Up to this order, the real part is unchanged, the imaginary part gets more than just a simple sign change and depends on the charge of ANOTHER parton!
- Still possible to get around it: PDFs could still be universal, but the ones sensitive to the imaginary part (those involved in single spin asymmetries) have to be multiplied by g₁/(2g₂+g₁)

Two-gluon exchange

A forest of gauge links

Bomhof, Mulders, Pijlman, PLB 596 (04) Collins, Qiu, PRD 75 (07) Vogelsang, Yuan, PRD76 (07)

Hadrons to hadrons

Weighted asymmetries

$$\int \frac{d\sigma_{DIS}}{dq_T} dq_T = H_{DIS} \otimes f \qquad \qquad \int \frac{d\sigma_{pp}}{dq_T} dq_T = H_{pp} \otimes f$$

$$\int q_T \frac{d\sigma_{DIS}}{dq_T} dq_T = K_{DIS} \otimes g \qquad \qquad \int q_T \frac{d\sigma_{pp}}{dq_T} dq_T = K_{pp} \otimes g' = CK_{pp} \otimes g$$

Weighted asymmetries

A.B., D'Alesio, Bomhof, Mulders, Murgia, PRL99 (07)

FIG. 5: Prediction for the azimuthal moment $M_N^{\gamma j}$ at $\sqrt{s} = 200 \text{ GeV}$, as a function of η_{γ} , integrated over $-1 \leq \eta_j \leq 0$ and $0.02 \leq x_{\perp} \leq 0.05$. Solid line: using gluonic-pole cross sections. Dashed line: using standard partonic cross sections. Dotted line: maximum contribution from the gluon Sivers function (absolute value). Dot-dashed line: maximum contribution from the Boer-Mulders function absolute value).

"Generalized" universality