Transverse structure of the nucleon Part 4: Advanced topics

The gauge link

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$
$$\psi(\xi) \to e^{i\alpha(\xi)} \psi(\xi)$$

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

$$\psi(\xi) \to e^{i\alpha(\xi)} \, \psi(\xi)$$

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P, S | \, \overline{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, | P, S \rangle$$

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

$$\psi(\xi) \to e^{i\alpha(\xi)} \, \psi(\xi)$$

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P, S | \, \overline{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, | P, S \rangle$$

$$U(\xi_1, \xi_2) \to e^{i\alpha(\xi_1)} U(\xi_1, \xi_2) e^{-i\alpha(\xi_2)}.$$

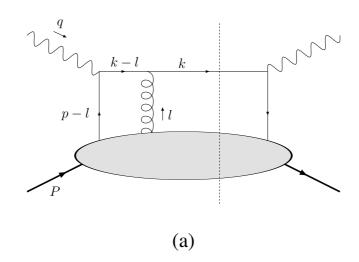
$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

$$\psi(\xi) \to e^{i\alpha(\xi)} \, \psi(\xi)$$

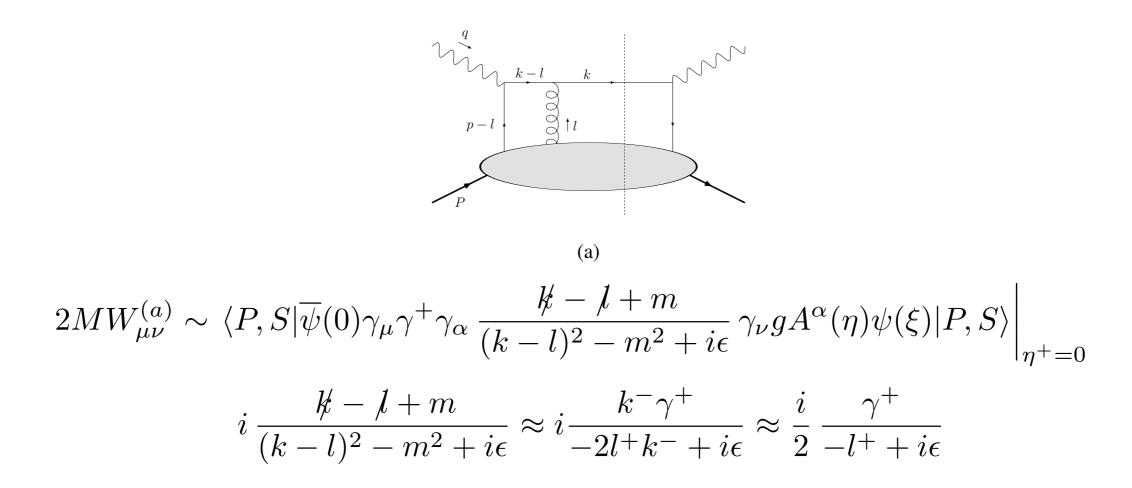
$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P, S | \, \overline{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, | P, S \rangle$$

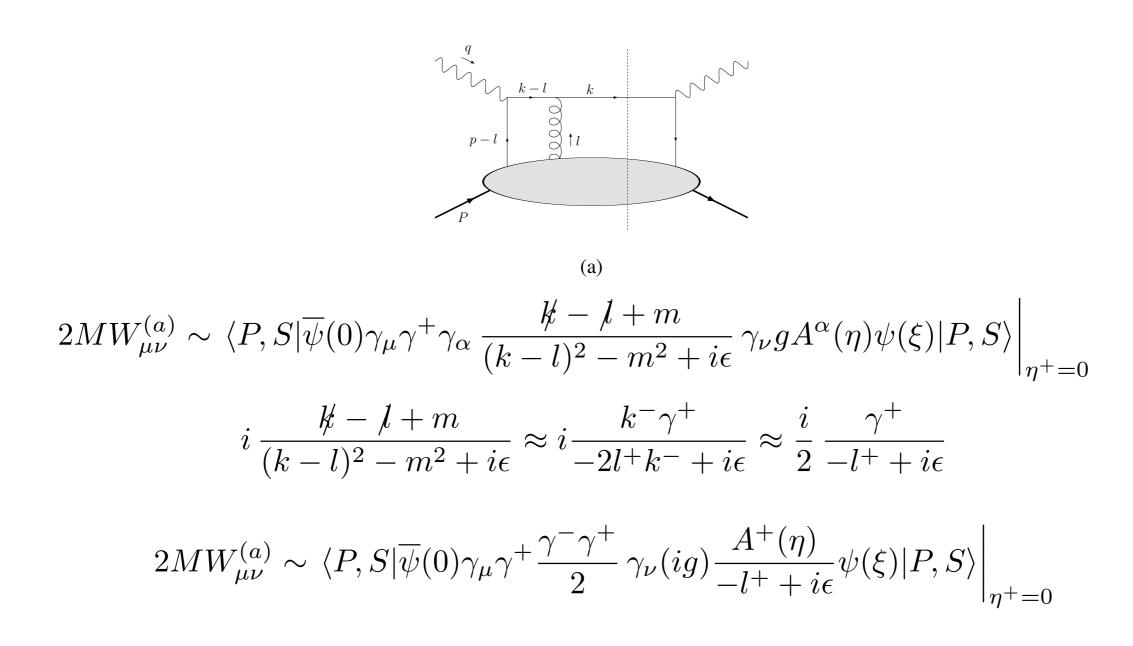
$$U(\xi_1, \xi_2) \to e^{i\alpha(\xi_1)} U(\xi_1, \xi_2) e^{-i\alpha(\xi_2)}.$$

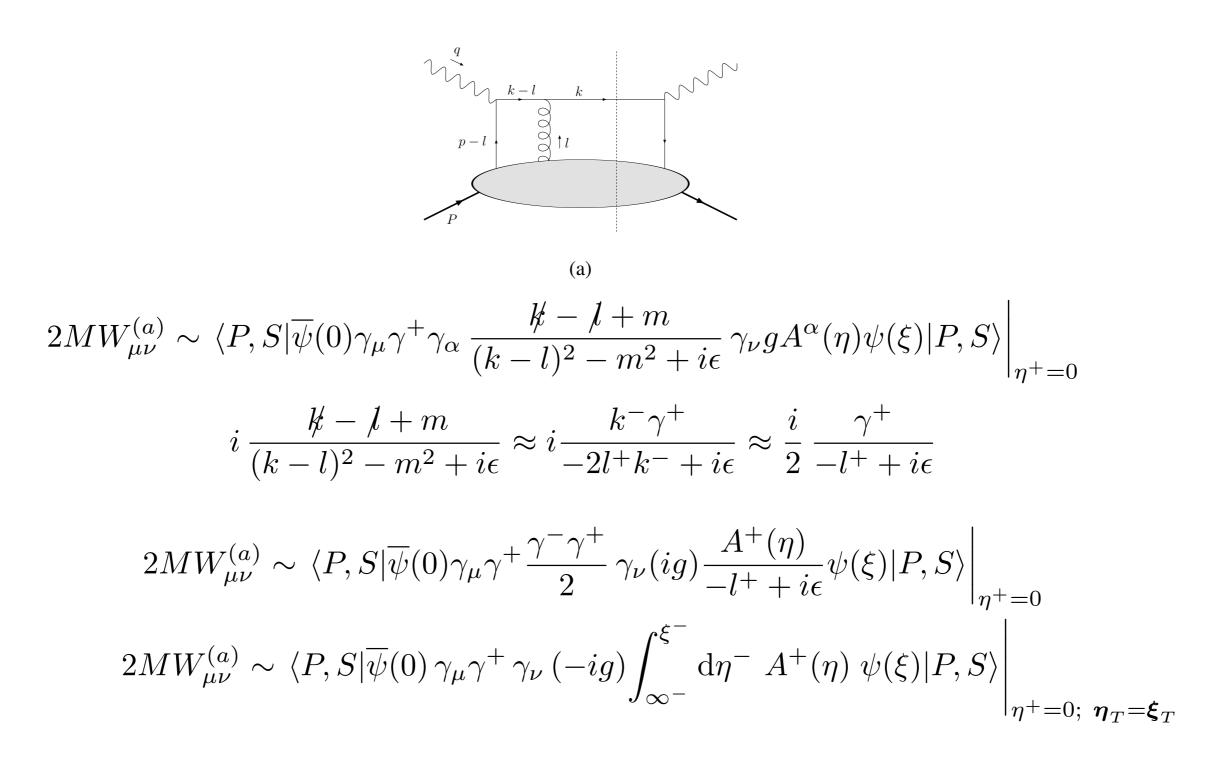
$$U_{[a,b]} = \mathcal{P} \exp \left[-ig \int_a^b d\eta^{\mu} A_{\mu}(\eta) \right]$$

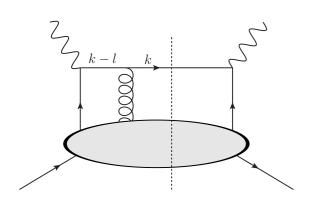


$$2MW_{\mu\nu}^{(a)} \sim \left\langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not k - \not l + m}{(k-l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) | P, S \right\rangle \bigg|_{\eta^{+} = 0}$$

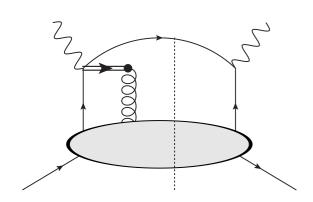






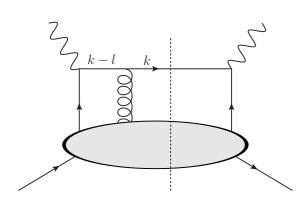


$$2MW_{\mu\nu}^{(a)} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu} (-ig) \int_{\infty^{-}}^{\xi^{-}} d\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle \bigg|_{\eta^{+}=0; \ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}$$

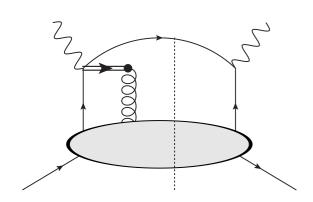


$$2MW^{\mu\nu}(q, P, S) \approx \sum_{q} e_q^2 \frac{1}{2} \text{Tr} \left[\Phi(x_B, S) \gamma^{\mu} \gamma^+ \gamma^{\nu} \right].$$

$$\Phi^{(a)}(x,S) \sim \langle P, S | \overline{\psi}(0) (-ig) \int_{\infty^{-}}^{\xi^{-}} d\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle$$

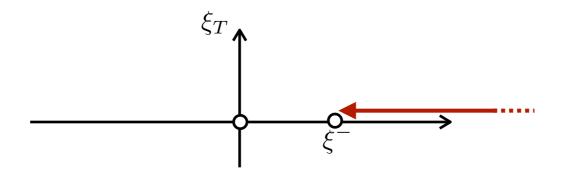


$$2MW_{\mu\nu}^{(a)} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu} (-ig) \int_{\infty^{-}}^{\xi^{-}} d\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle \bigg|_{\eta^{+}=0; \ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}$$



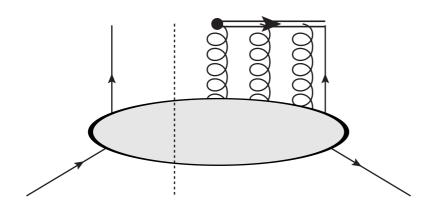
$$2MW^{\mu\nu}(q, P, S) \approx \sum_{q} e_q^2 \frac{1}{2} \text{Tr} \left[\Phi(x_B, S) \gamma^{\mu} \gamma^+ \gamma^{\nu} \right].$$

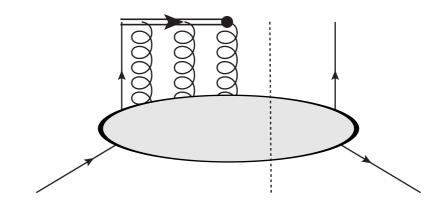
$$\Phi^{(a)}(x,S) \sim \langle P, S | \overline{\psi}(0) (-ig) \int_{\infty^{-}}^{\xi^{-}} d\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle$$



Shape of the gauge link

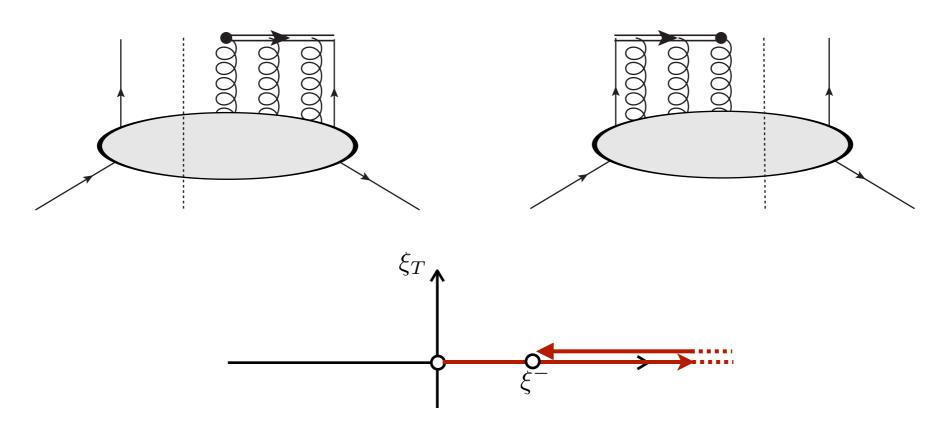
$$\Phi(x,S) \sim \langle P, S | \overline{\psi}(0) U_{[0,\infty^-]} U_{[\infty^-,\xi^-]} \psi(\xi) | P, S \rangle$$





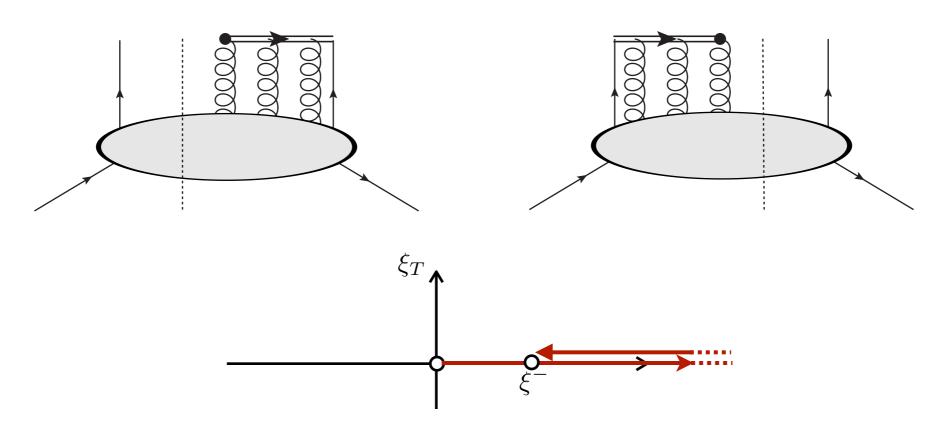
Shape of the gauge link

$$\Phi(x,S) \sim \langle P, S | \overline{\psi}(0) U_{[0,\infty^-]} U_{[\infty^-,\xi^-]} \psi(\xi) | P, S \rangle$$



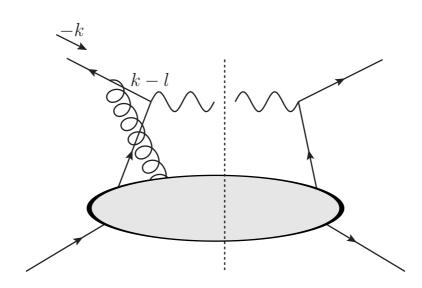
Shape of the gauge link

$$\Phi(x,S) \sim \langle P, S | \overline{\psi}(0) U_{[0,\infty^-]} U_{[\infty^-,\xi^-]} \psi(\xi) | P, S \rangle$$



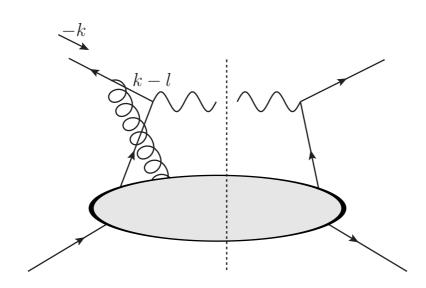


Gauge link in Drell-Yan



$$2MW_{\mu\nu}^{(a)} \sim \left\langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not k - \not l + m}{(k-l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) | P, S \right\rangle \bigg|_{\eta^{+}=0}$$

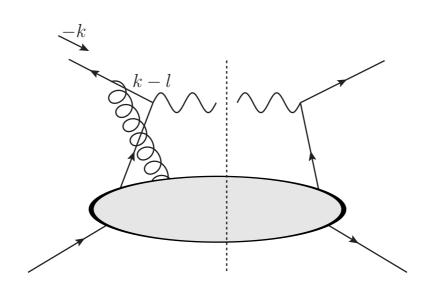
Gauge link in Drell-Yan



$$2MW_{\mu\nu}^{(a)} \sim \left\langle P, S \middle| \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not| k - \not| l + m}{(k - l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) \middle| P, S \right\rangle \bigg|_{\eta^{+} = 0}$$

$$i \frac{k - l + m}{(k - l)^2 - m^2 + i\epsilon} \approx i \frac{-(-k)^- \gamma^+}{2l^+ (-k)^- + i\epsilon} \approx \frac{i}{2} \frac{\gamma^+}{-l^+ - i\epsilon}$$

Gauge link in Drell-Yan



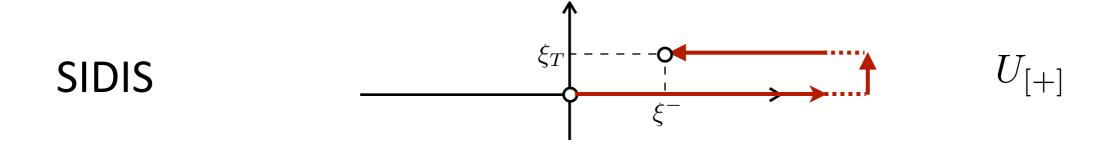
$$2MW_{\mu\nu}^{(a)} \sim \left\langle P, S \middle| \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not| k - \not| + m}{(k-l)^{2} - m^{2} + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi) \middle| P, S \right\rangle \bigg|_{\eta^{+} = 0}$$

$$i \frac{k - l + m}{(k - l)^2 - m^2 + i\epsilon} \approx i \frac{-(-k)^- \gamma^+}{2l^+ (-k)^- + i\epsilon} \approx \frac{i}{2} \frac{\gamma^+}{-l^+ - i\epsilon}$$

$$2MW_{\mu\nu}^{(a)} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu} (-ig) \int_{-\infty^{-}}^{\xi^{-}} d\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle \bigg|_{\eta^{+}=0; \ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}$$

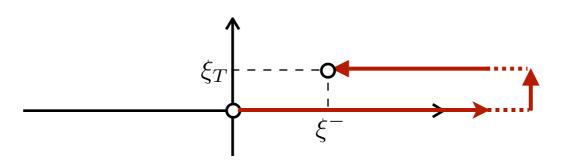
$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) \mathbf{U_{[0,\xi]}} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) \mathbf{U}_{[0,\xi]} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

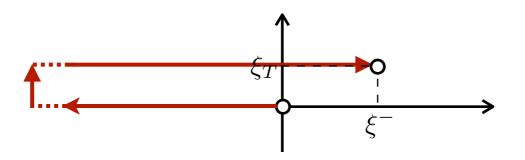


$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) \mathbf{U}_{[0,\xi]} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

SIDIS



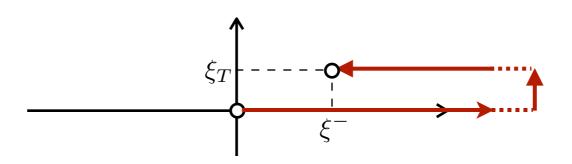
Drell-Yan



 $U_{[-]}$

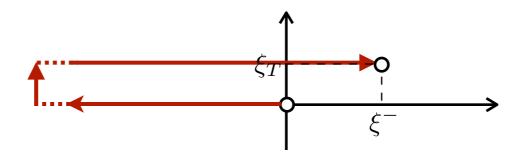
$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) \mathbf{U}_{[0, \xi]} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

SIDIS



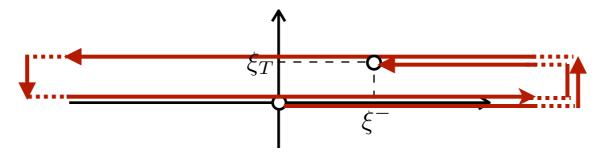
 $U_{[+]}$

Drell-Yan



 $U_{[-]}$

pp to hadrons

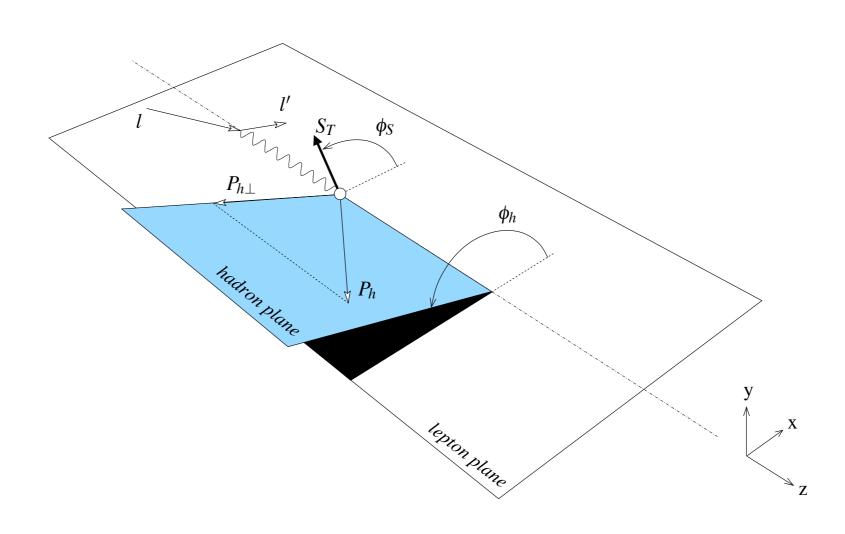


 $U_{[\square]}U_{[+]}$

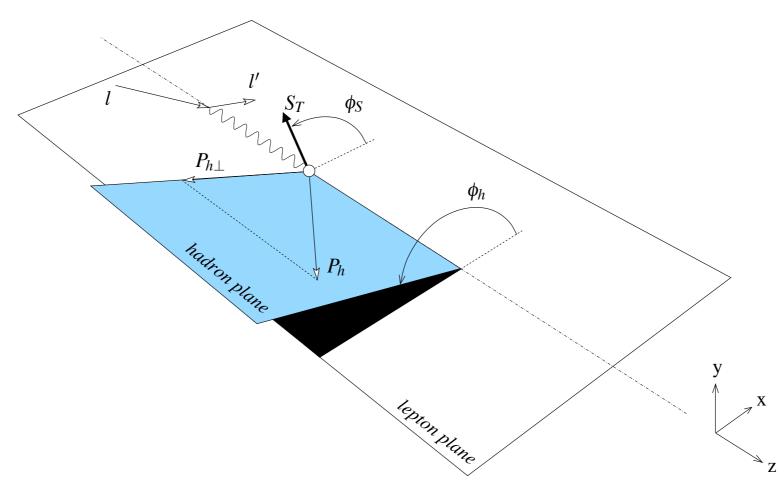
+ several others

High and low transverse momentum

SIDIS once again



SIDIS once again

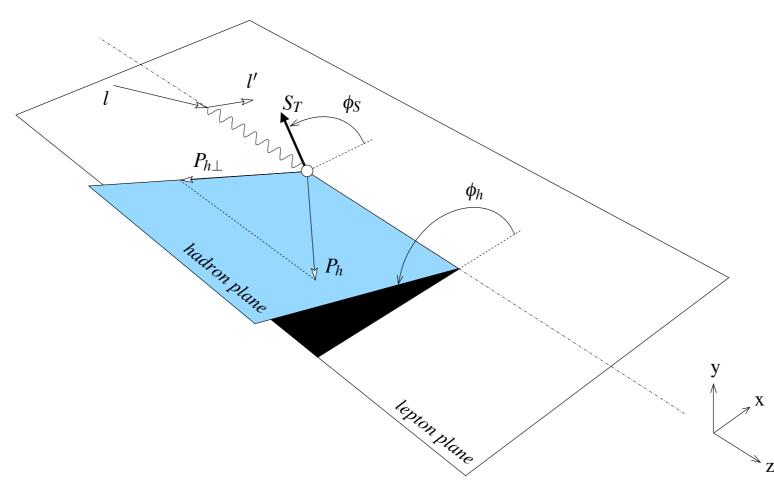


Q = photon virtuality

M = hadron mass

 $P_{h\perp}$ = hadron transverse momentum

SIDIS once again



Q = photon virtuality

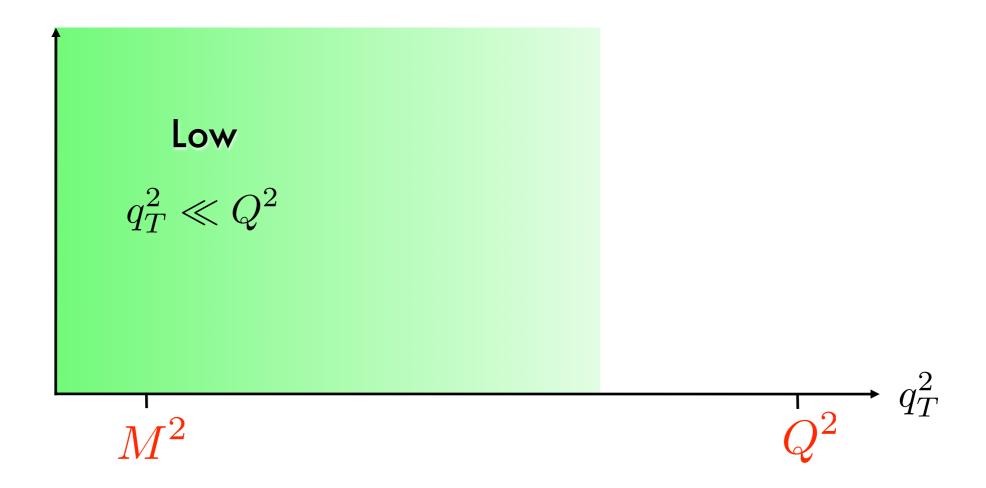
M = hadron mass

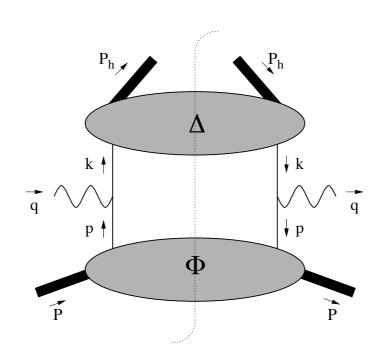
 $P_{h\perp}$ = hadron transverse momentum

$$q_T^2 \approx P_{h\perp}^2/z^2$$

Low and high transverse momentum

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)





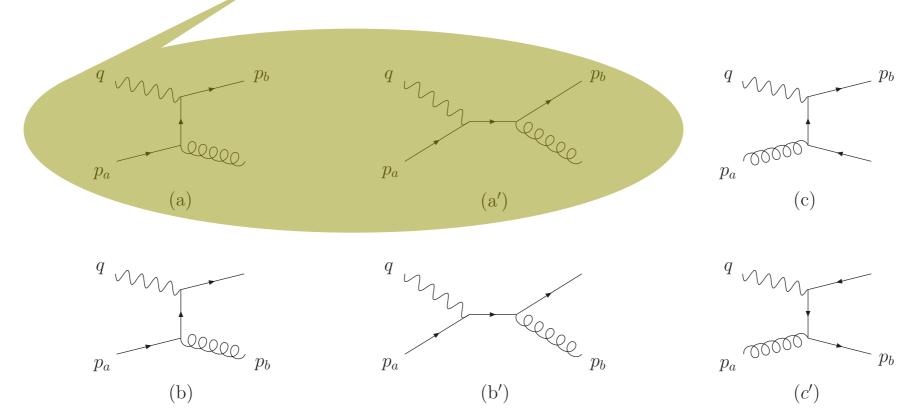
$$F_{UU,T} = \mathcal{C}\big[f_1D_1\big]$$

$$\mathcal{C}[wfD] = \sum_{a} x e_a^2 \int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \, \delta^{(2)} (\mathbf{p}_T - \mathbf{k}_T - \mathbf{P}_{h\perp}/z) \, w(\mathbf{p}_T, \mathbf{k}_T) \, f^a(x, p_T^2) \, D^a(z, k_T^2),$$

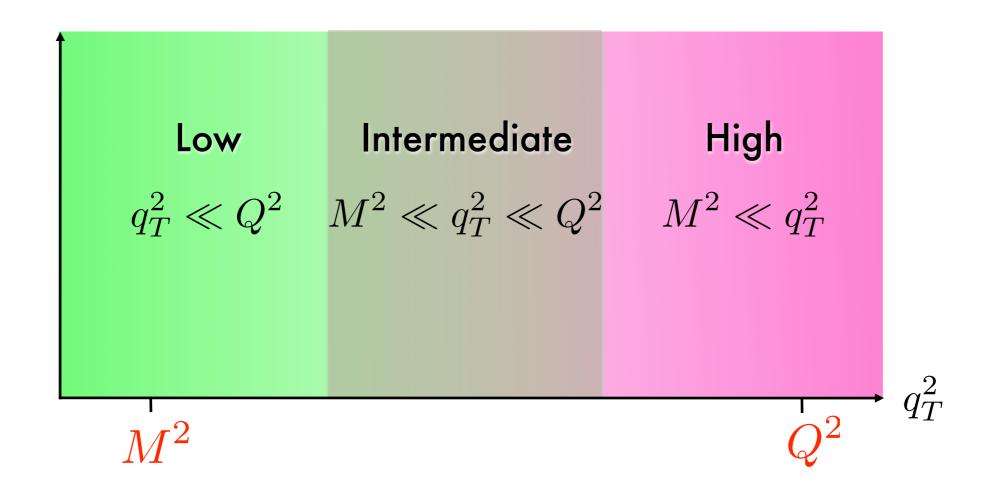
Low and high transverse momentum

$$F_{UU,T} = \frac{1}{Q^2} \frac{\alpha_s}{(2\pi z)^2} \sum_a x e_a^2 \int_x^1 \frac{\hat{x}}{\hat{x}} \int_z^1 \frac{\hat{z}}{\hat{z}} \, \delta\left(\frac{q_T^2}{Q^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}}\right) \\
\times \left[f_1^a \left(\frac{x}{\hat{x}}\right) D_1^a \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to qg)} + f_1^a \left(\frac{x}{\hat{x}}\right) D_1^g \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to gq)} + f_1^g \left(\frac{x}{\hat{x}}\right) D_1^a \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* g \to q\bar{q})} \right]$$

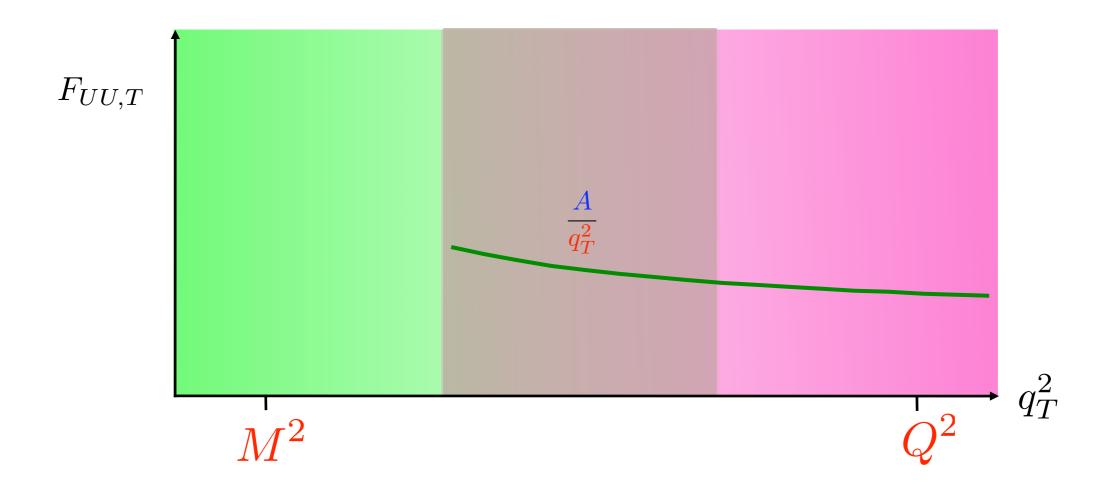
$$F_{UU,T} = \frac{1}{Q^2} \frac{\alpha_s}{(2\pi z)^2} \sum_a x e_a^2 \int_x^1 \frac{\hat{x}}{\hat{x}} \int_z^1 \frac{\hat{z}}{\hat{z}} \, \delta\left(\frac{q_T^2}{Q^2} - \frac{(1-\hat{x})(1-\hat{z})}{\hat{x}\hat{z}}\right) \\
\times \left[f_1^a \left(\frac{x}{\hat{x}}\right) D_1^a \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to qg)} + f_1^a \left(\frac{x}{\hat{x}}\right) D_1^g \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* q \to gq)} + f_1^g \left(\frac{x}{\hat{x}}\right) D_1^a \left(\frac{z}{\hat{z}}\right) C_{UU,T}^{(\gamma^* g \to q\bar{q})} \right]$$



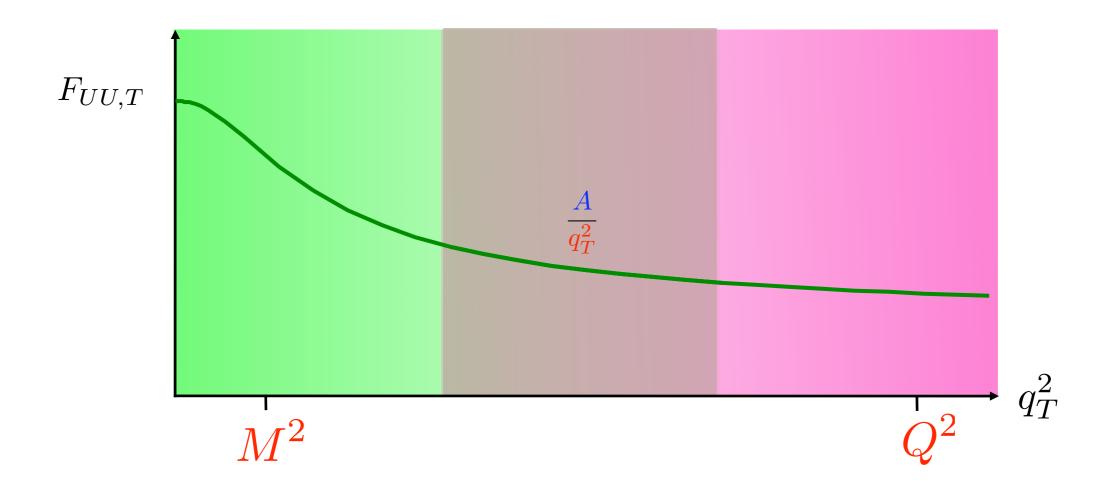
Low and high transverse momentum



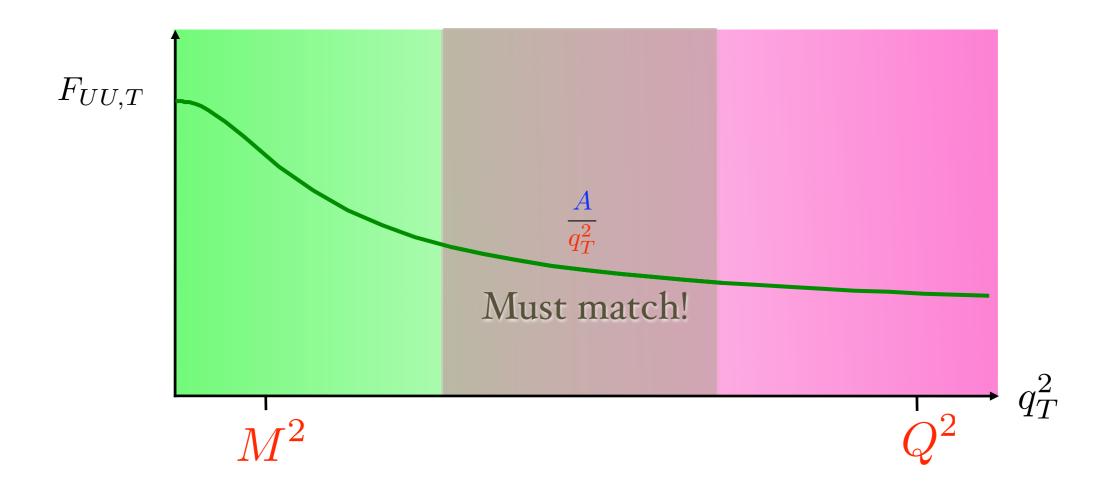
$F_{UU,T}$ structure function



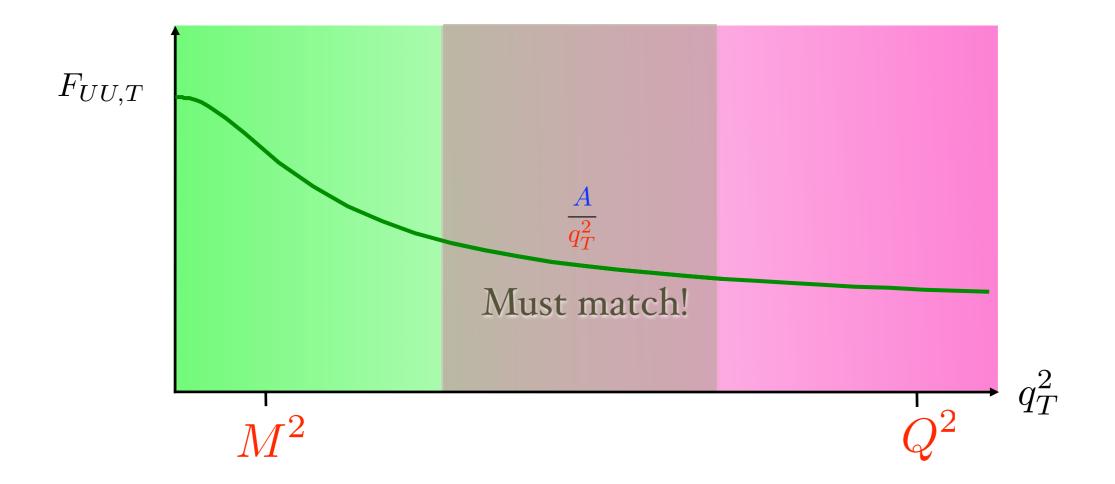
$F_{UU,T}$ structure function



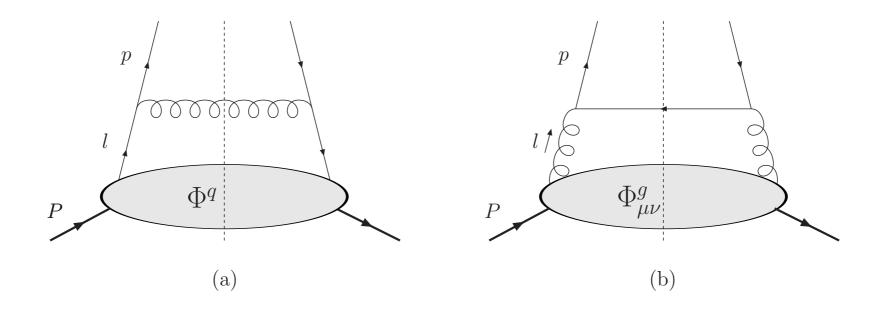
$F_{UU,T}$ structure function

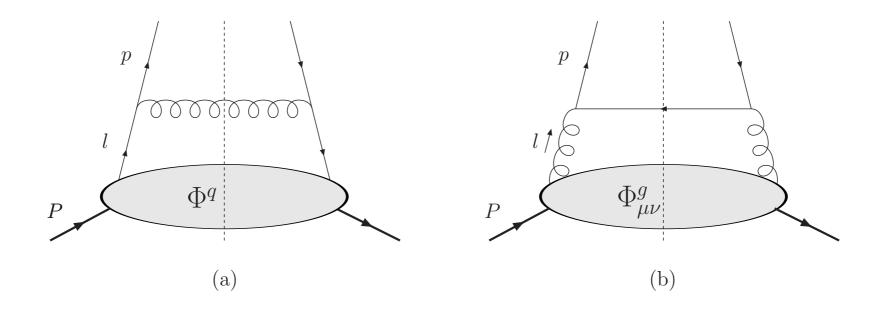


$F_{UU,T}$ structure function

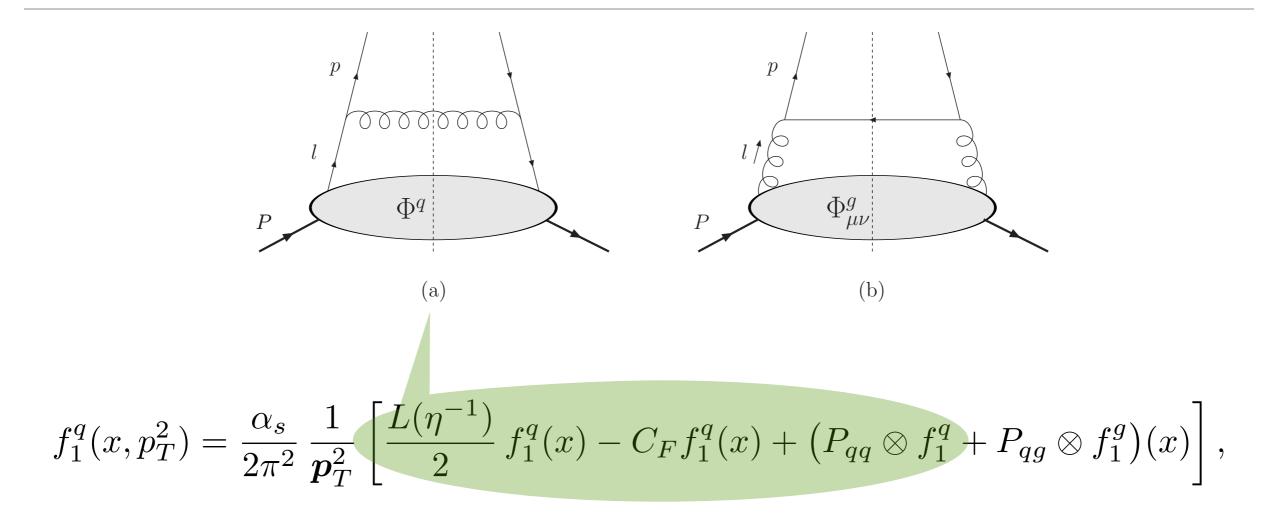


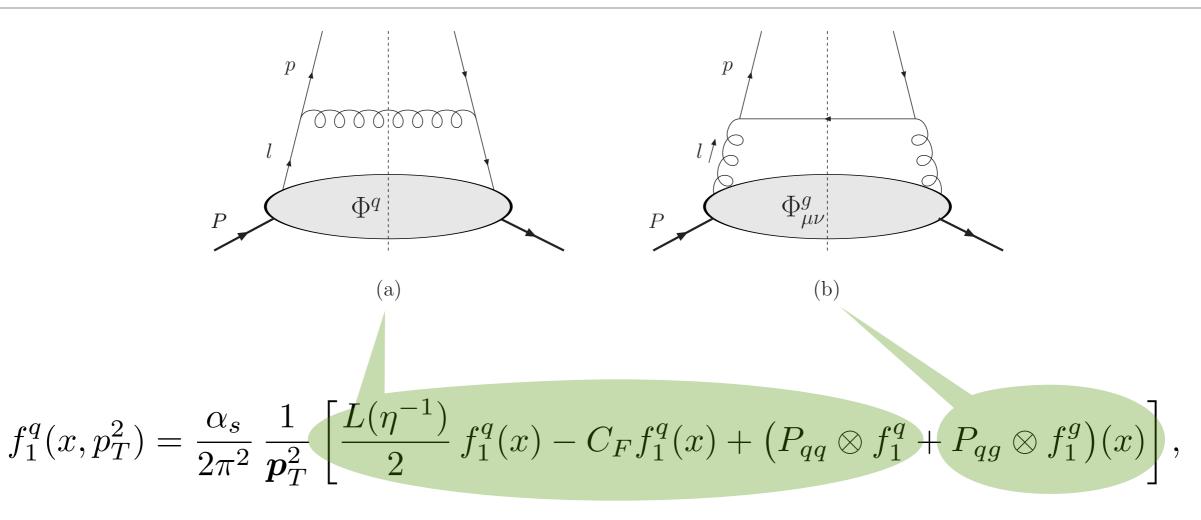
The leading high- q_T part is just the "tail" of the leading low- q_T part





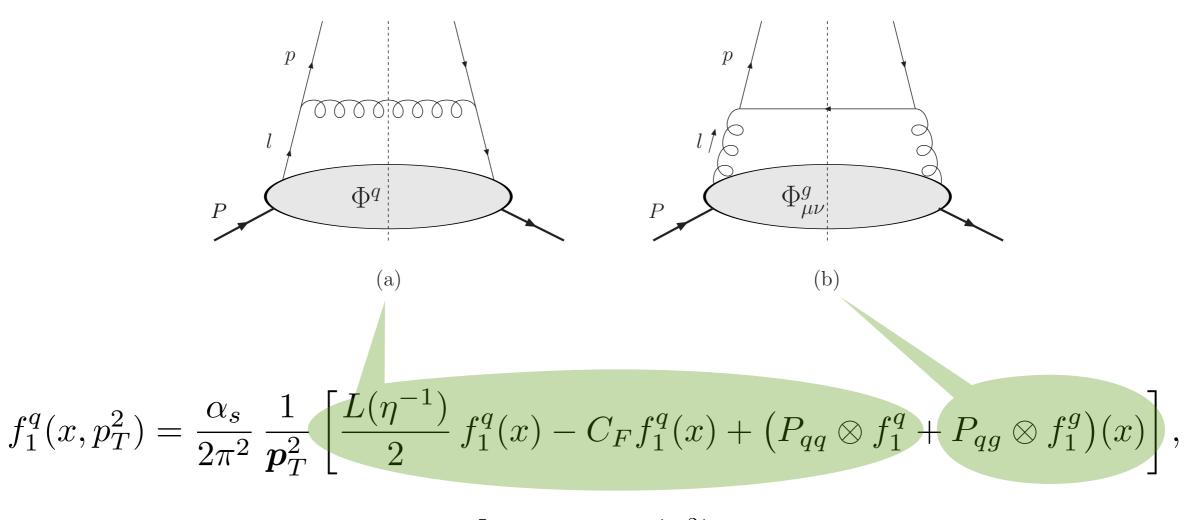
$$f_1^q(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\boldsymbol{p}_T^2} \left[\frac{L(\eta^{-1})}{2} f_1^q(x) - C_F f_1^q(x) + (P_{qq} \otimes f_1^q + P_{qg} \otimes f_1^g)(x) \right],$$





$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) + \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z) \right]$$

where
$$L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$$



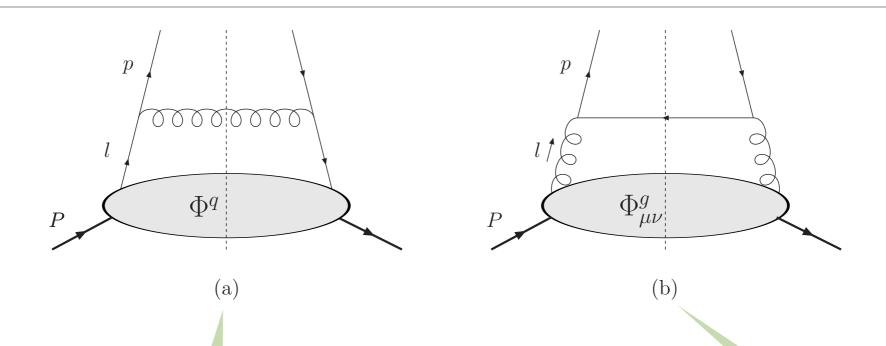
$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) + \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z) \right]$$

$$+ \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z)$$

$$DGLAP S$$

where $L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$

DGLAP splitting functions



$$f_1^q(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\boldsymbol{p}_T^2} \left[\frac{L(\eta^{-1})}{2} f_1^q(x) - C_F f_1^q(x) + (P_{qq} \otimes f_1^q + P_{qg} \otimes f_1^g)(x) \right],$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) \right]$$

$$+\left(P_{qq}\otimes f_1^a+P_{qg}\otimes f_1^g\right)(x)D_1^a(z)$$

Large log, needs resummation

where $L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$

DGLAP splitting functions

Other TMDs

$$xf^{\perp} \sim \frac{1}{\boldsymbol{p}_T^2} \, \alpha_s \, \mathcal{F}[f_1] \,,$$

. . .

$$f_{1T}^{\perp} \sim \frac{M^2}{\boldsymbol{p}_T^4} \, \alpha_s \, \mathcal{F}[f_{1T}^{\perp(1)}, \ldots] \,,$$

. .

$$xf_L^{\perp} \sim \frac{1}{\boldsymbol{p}_T^2} \, \alpha_s^2 \, \mathcal{F}[g_1] \,,$$

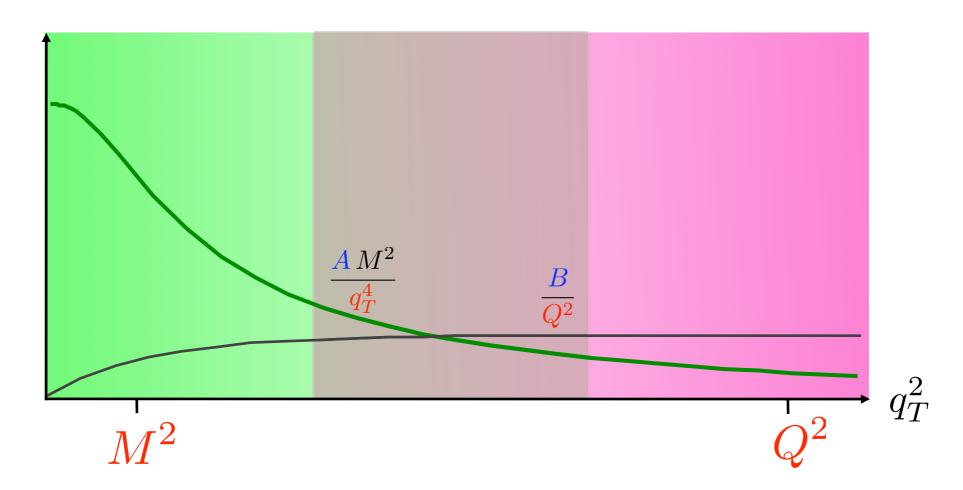
• •

$$h_{1T}^{\perp} \sim \frac{M^2}{\boldsymbol{p}_T^4} \, \alpha_s^2 \, \mathcal{F}[h_1] \,,$$

• • •

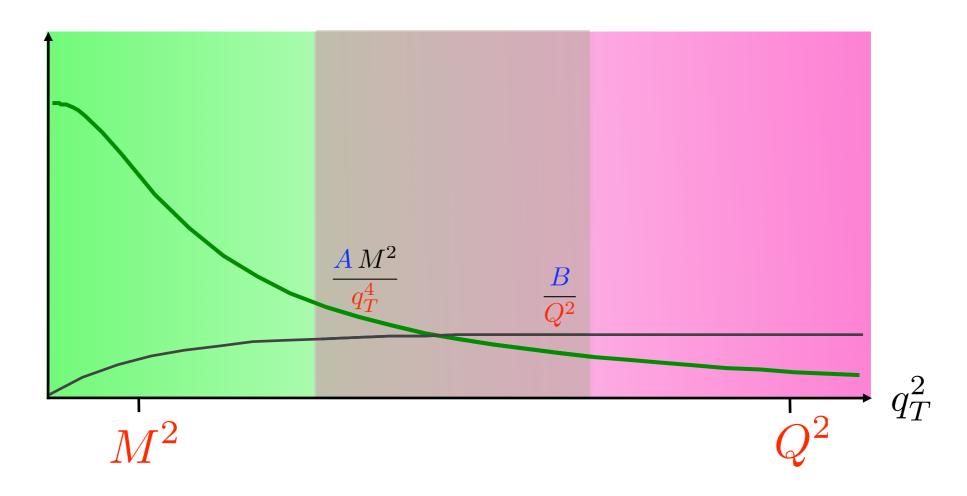
Expected mismatch

The leading terms in the two expansions CANNOT and MUST not match!

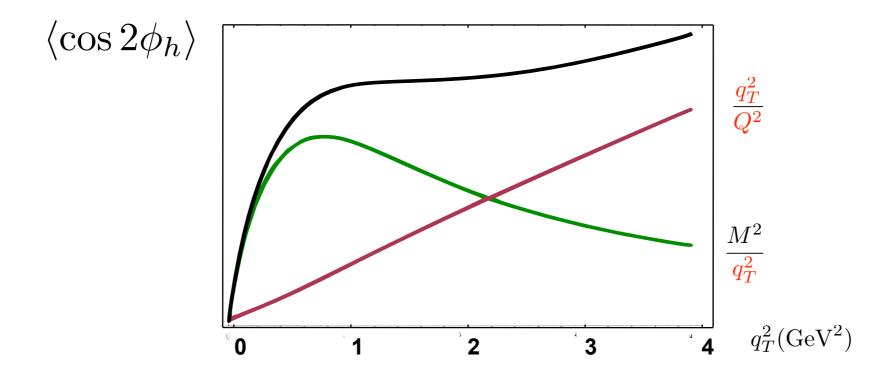


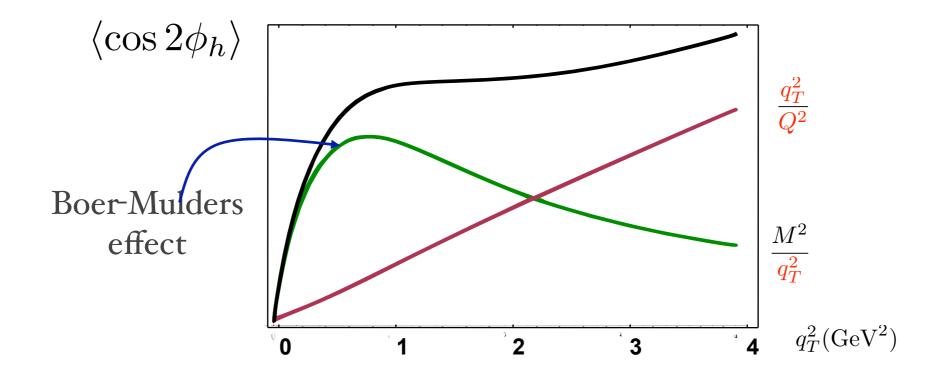
Expected mismatch

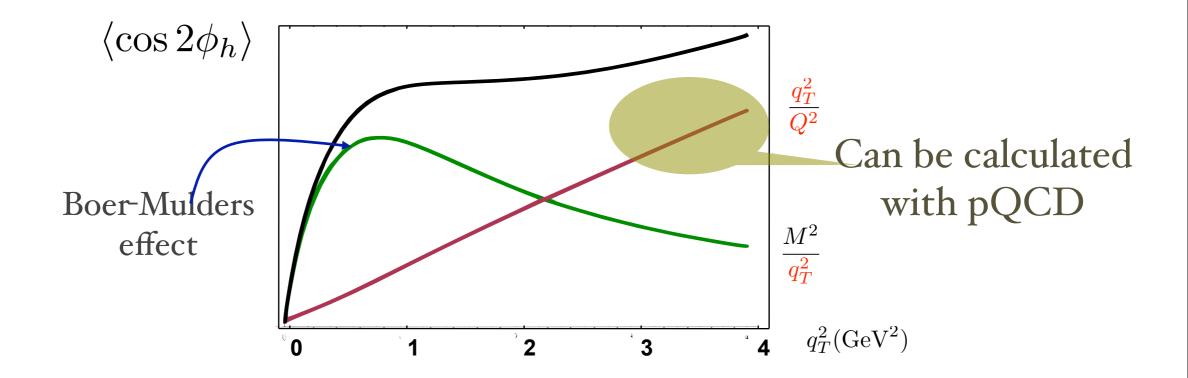
The leading terms in the two expansions CANNOT and MUST not match!

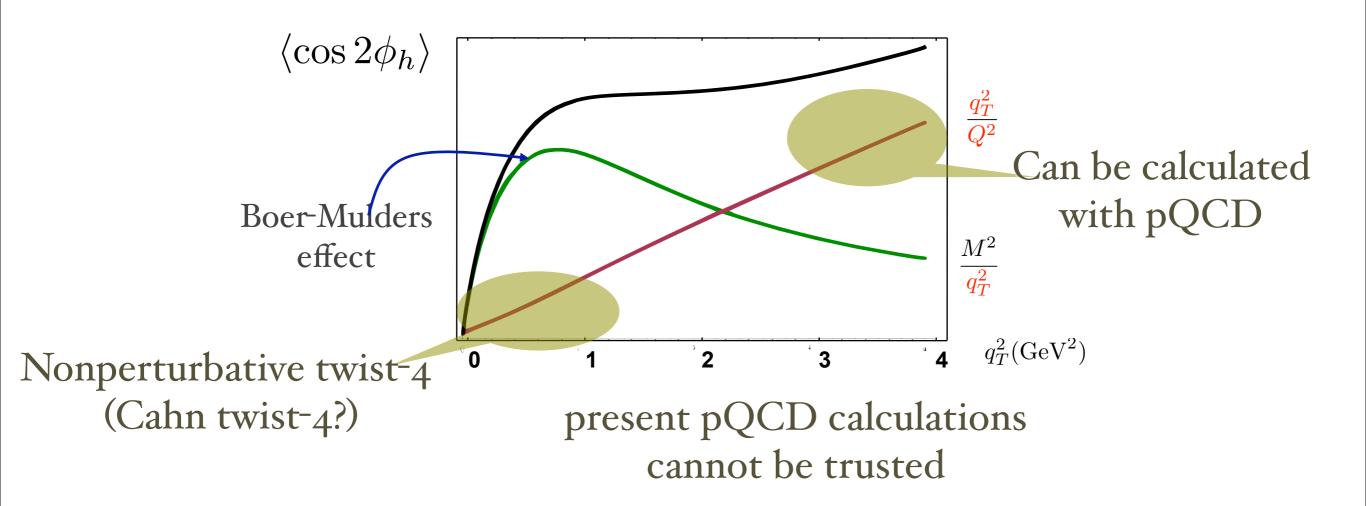


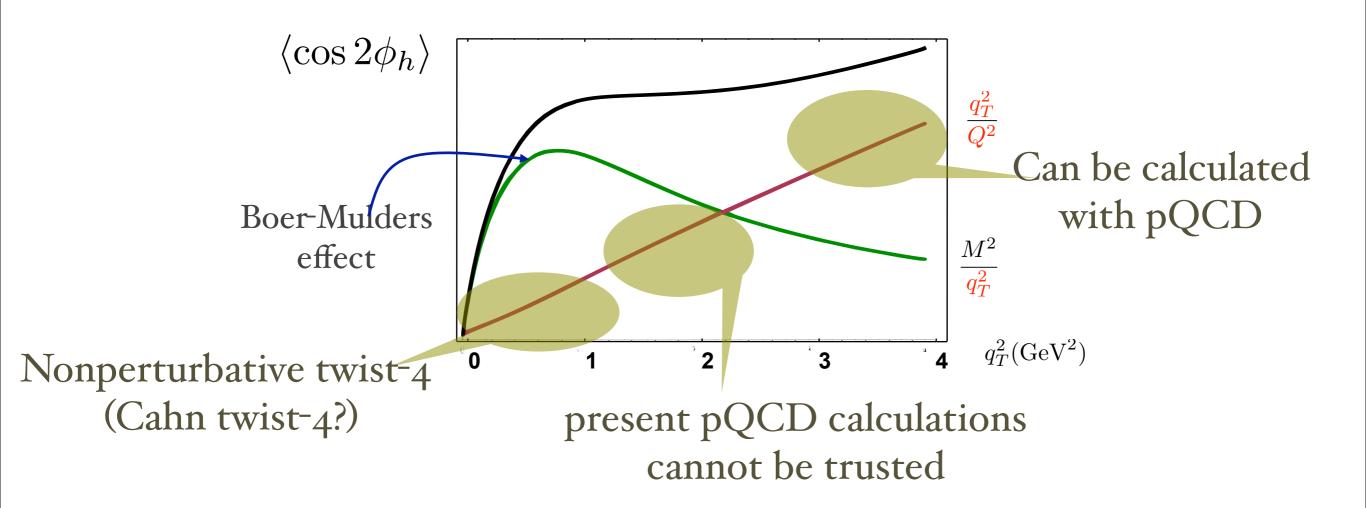
Two distinct mechanisms are involved











All structure functions

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

					AD, L	. Doci, ivi.	DICITI, T.O. IVI	<u>uiders, JHEP 00 (00)</u>
	$low-q_T$ calculation			high- q_T calculation				
observable	twist	order	power	twist	order	power	powers match	
$F_{UU,T}$	2	α_s	$1/q_T^2$	2	α_s	$1/q_T^2$	yes	
$F_{UU,L}$	4			2	α_s	$1/Q^2$?	
$F_{UU}^{\cos\phi_h}$	3	α_s	$1/(Qq_T)$	2	α_s	$1/(Qq_T)$	yes	
$F_{UU}^{\cos 2\phi_h}$	2	α_s	$1/q_T^4$	2	α_s	$1/Q^2$	no	
$F_{LU}^{\sin\phi_h}$	3	α_s^2	$1/(Qq_T)$	2	α_s^2	$1/(Qq_T)$	yes	
$F_{UL}^{\sin\phi_h}$	3	α_s^2	$1/(Qq_T)$					
$F_{UL}^{\sin2\phi_h}$	2	α_s	$1/q_T^4$					· · · · · · · · · · · · · · · · · · ·
F_{LL}	2	α_s	$1/q_T^2$	2	α_s	$1/q_T^2$	yes	conjectures!
$F_{LL}^{\cos\phi_h}$	3	α_s	$1/(Qq_T)$	2	α_s	$1/(Qq_T)$	yes	
$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	2	α_s	$1/q_T^3$	3	α_s	$1/q_T^3$	yes —	
$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	4			3	α_s	$1/(Q^2 q_T)$?	
$F_{UT}^{\sin(\phi_h + \phi_S)}$	2	α_s	$1/q_T^3$	3	α_s	$1/q_T^3$	yes	
$F_{UT}^{\sin(3\phi_h - \phi_S)}$	2	α_s^2	$1/q_T^3$	3	α_s	$1/(Q^2q_T)$	no	
$F_{UT}^{\sin\phi_S}$	3	α_s	$1/(Qq_T^2)$	3	α_s	$1/(Qq_T^2)$	yes ——	
$F_{UT}^{\sin(2\phi_h - \phi_S)}$	3	α_s	$1/(Qq_T^2)$	3	α_s	$1/(Qq_T^2)$	yes ——	
$F_{LT}^{\cos(\phi_h - \phi_S)}$	2	α_s	$1/q_T^3$					
$F_{LT}^{\cos\phi_S}$	3	α_s	$1/(Qq_T^2)$					
$F_{LT}^{\cos(2\phi_h - \phi_S)}$	3	α_s	$1/(Qq_T^2)$					

Evolution equations

Collinear evolution of transversity

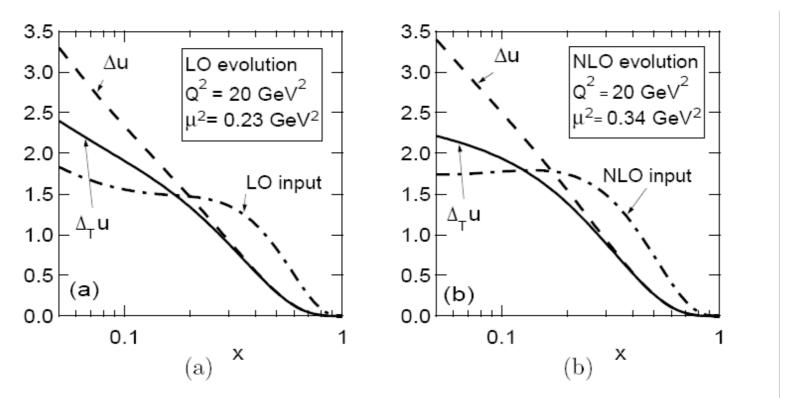
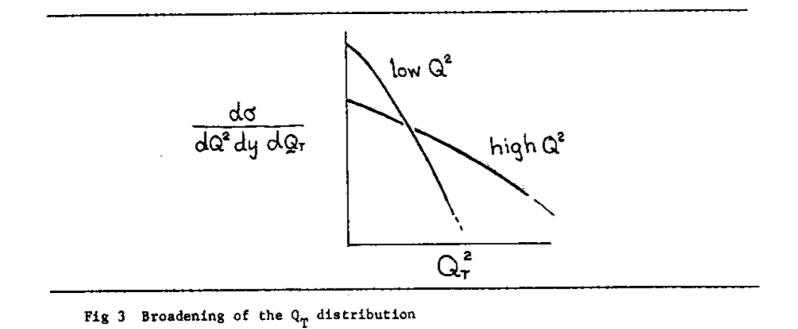


Fig. 19. Comparison of the Q^2 -evolution of $\Delta_T u(x, Q^2)$ and $\Delta u(x, Q^2)$ at (a) LO and (b) NLO, from [72].

Barone, Drago, Ratcliffe, PR 359 (2002) Hayashigaki, Kanazawa, Koike, PRD56 (97)

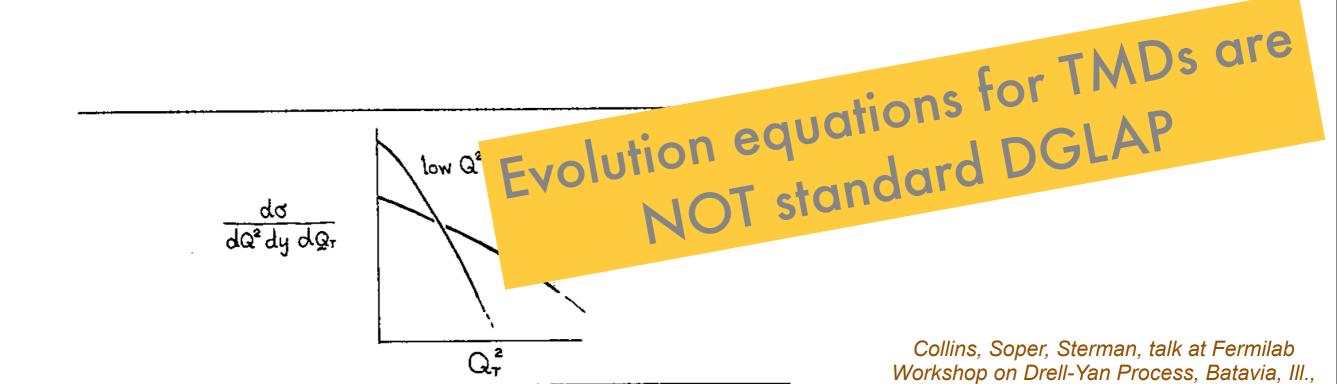
TMDs evolution



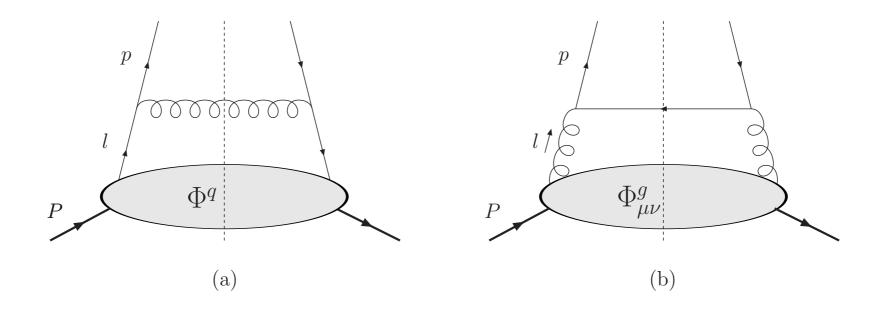
Collins, Soper, Sterman, talk at Fermilab Workshop on Drell-Yan Process, Batavia, III., Oct 7-8, 1982

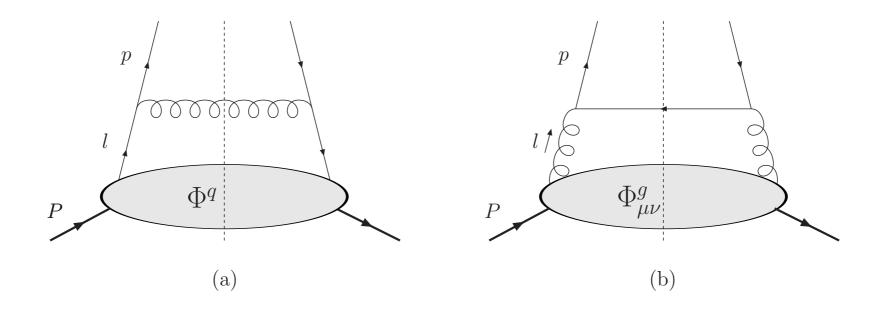
TMDs evolution

Fig 3 Broadening of the $\mathbf{Q}_{\mathbf{T}}$ distribution

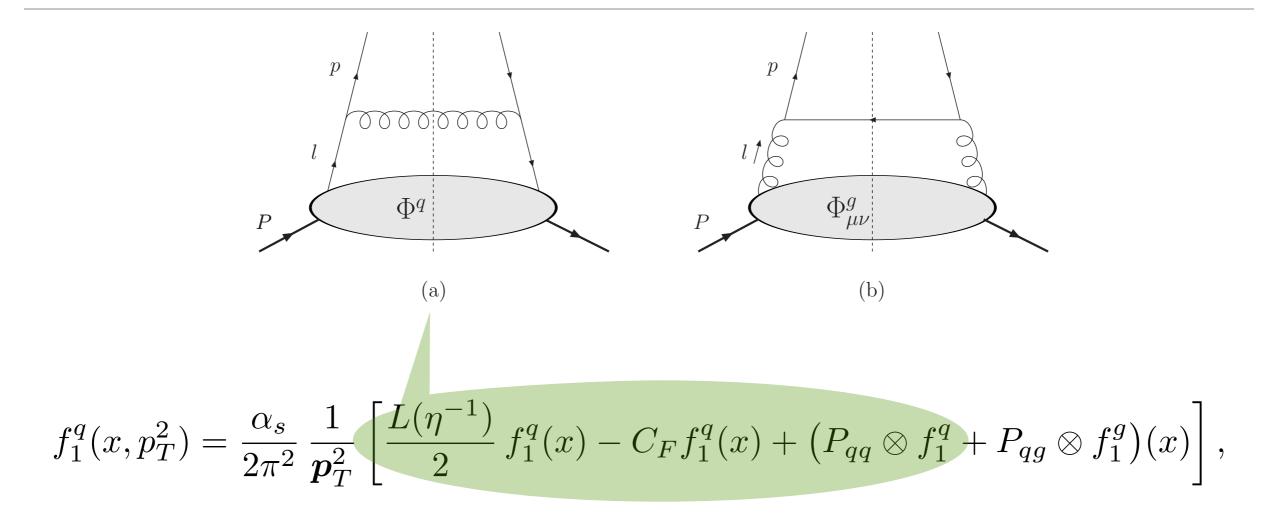


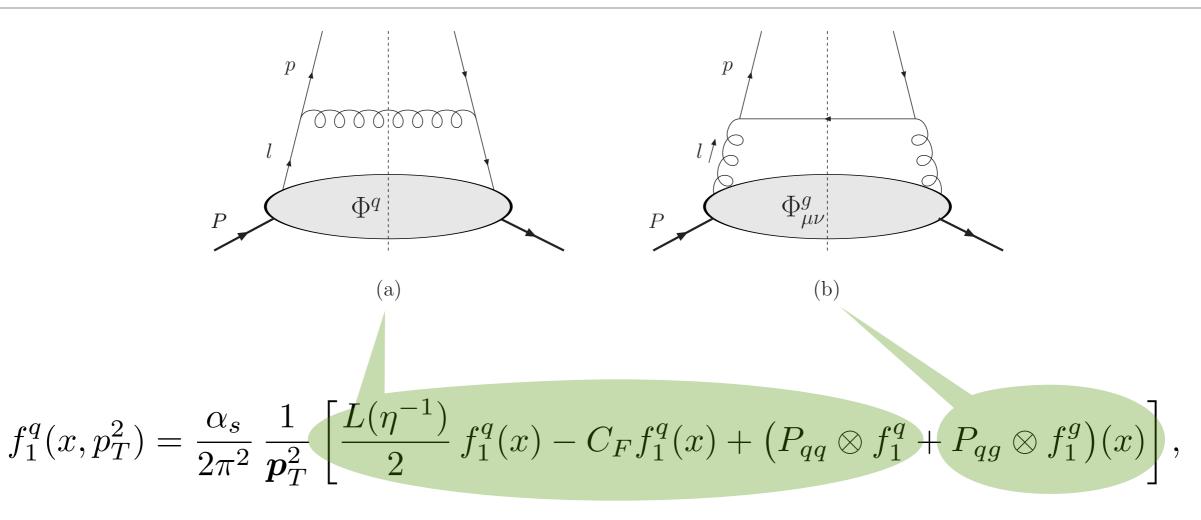
Oct 7-8, 1982





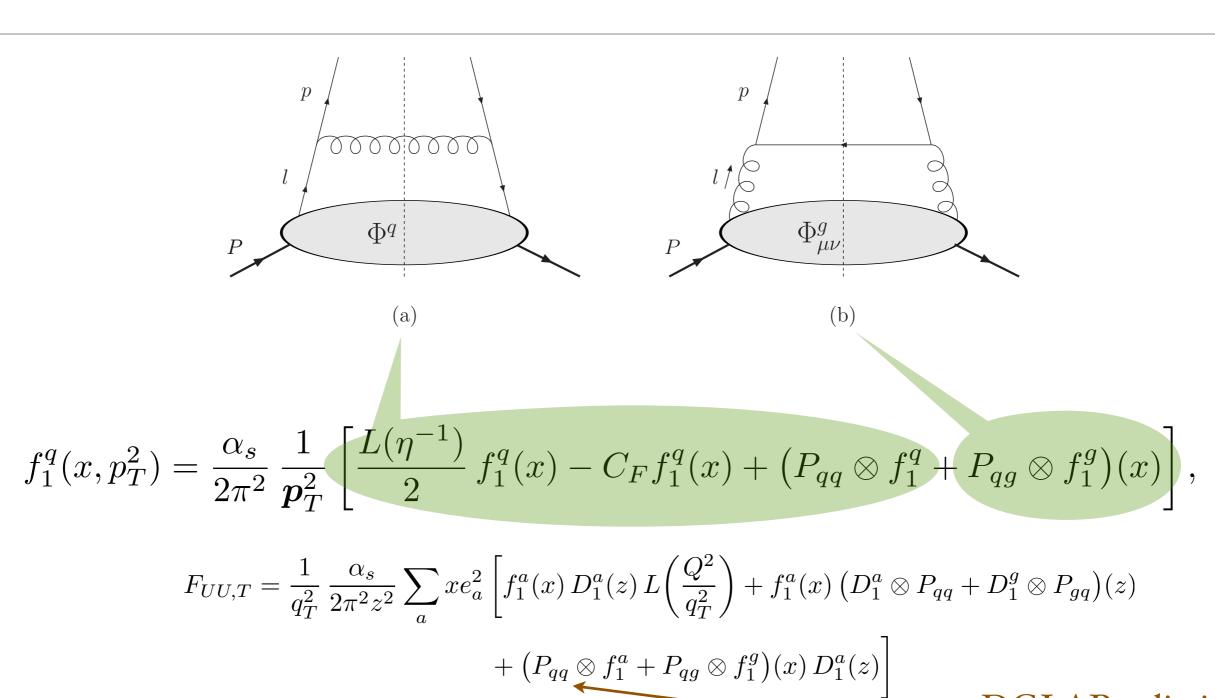
$$f_1^q(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\boldsymbol{p}_T^2} \left[\frac{L(\eta^{-1})}{2} f_1^q(x) - C_F f_1^q(x) + (P_{qq} \otimes f_1^q + P_{qg} \otimes f_1^g)(x) \right],$$





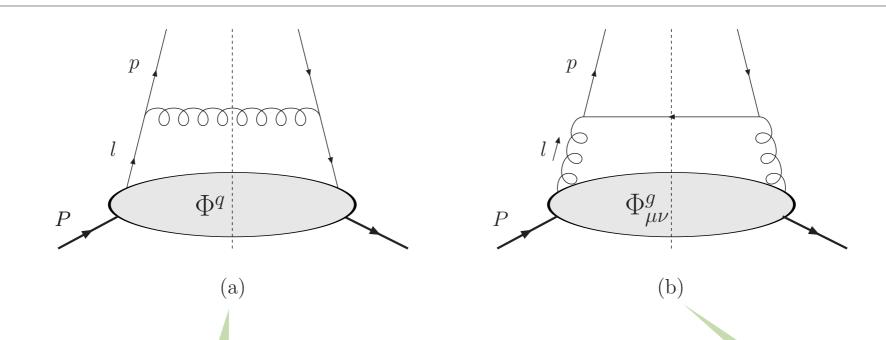
$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) + \left(P_{qq} \otimes f_1^a + P_{qg} \otimes f_1^g\right)(x) D_1^a(z) \right]$$

where
$$L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$$



DGLAP splitting functions

where
$$L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$$



$$f_1^q(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\boldsymbol{p}_T^2} \left[\frac{L(\eta^{-1})}{2} f_1^q(x) - C_F f_1^q(x) + (P_{qq} \otimes f_1^q + P_{qg} \otimes f_1^g)(x) \right],$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + f_1^a(x) \left(D_1^a \otimes P_{qq} + D_1^g \otimes P_{gq}\right)(z) \right]$$

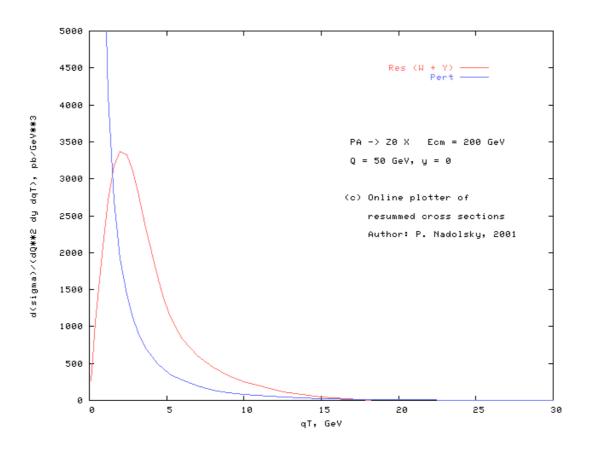
$$+\left(P_{qq}\otimes f_1^a+P_{qg}\otimes f_1^g\right)(x)D_1^a(z)$$

Large log, needs resummation

where $L\left(\frac{Q^2}{q_T^2}\right) = 2C_F \ln \frac{Q^2}{q_T^2} - 3C_F$

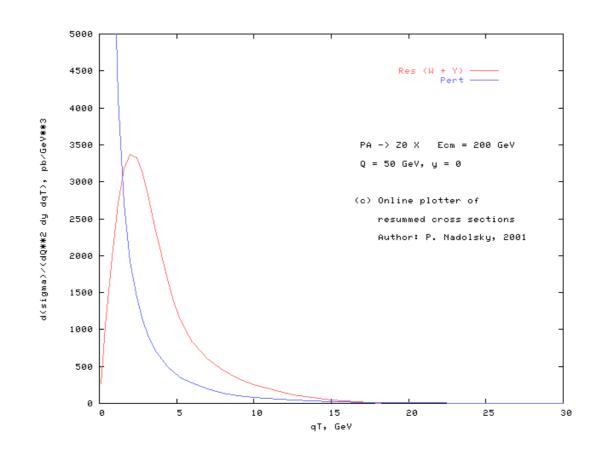
DGLAP splitting functions

$$F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[\left(f_1^i \otimes \mathcal{C}_{ia} \right) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$$



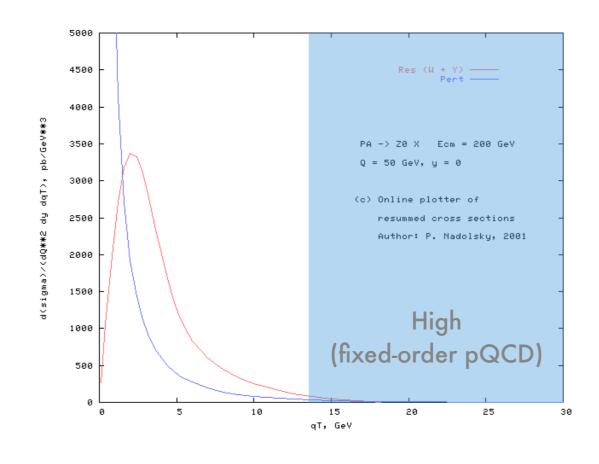
 $F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[\left(f_1^i \otimes \mathcal{C}_{ia} \right) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$

collinear PDF and FF calculable with pQCD



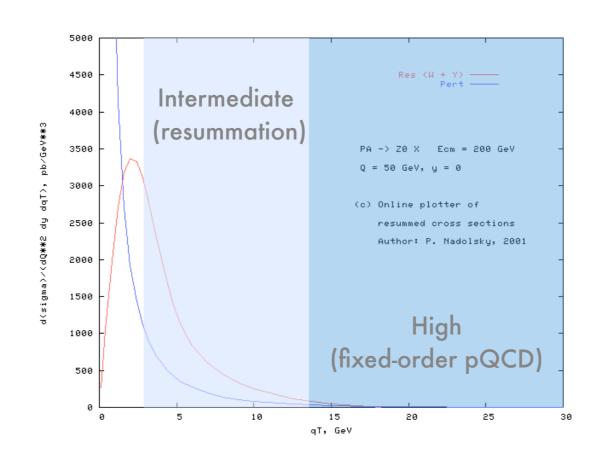
 $F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[(f_1^i \otimes \mathcal{C}_{ia}) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$

collinear PDF and FF calculable with pQCD



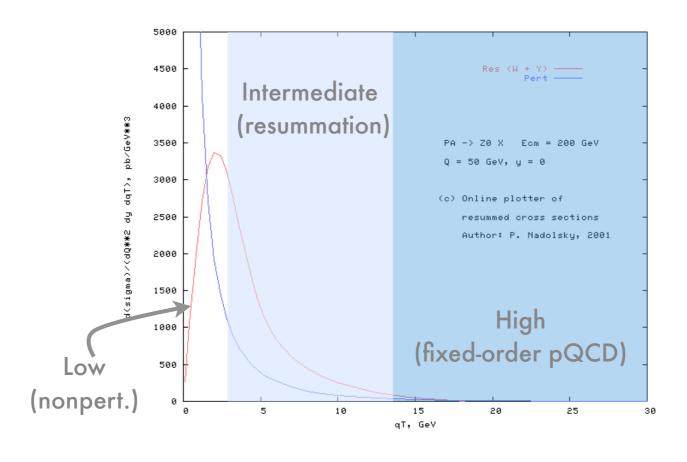
 $F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[\left(f_1^i \otimes \mathcal{C}_{ia} \right) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$

collinear PDF and FF calculable with pQCD



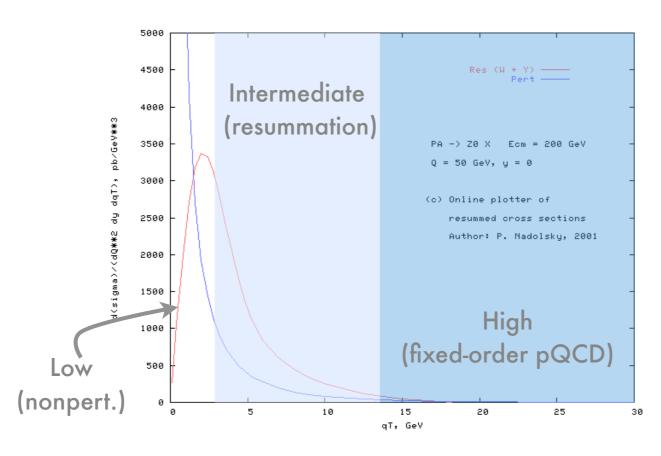
 $F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[(f_1^i \otimes \mathcal{C}_{ia}) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$

collinear PDF and FF calculable with pQCD



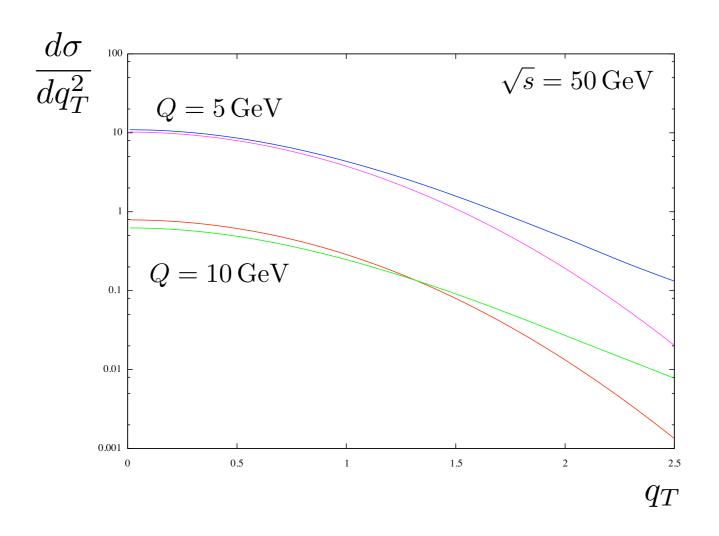
 $F_{UU,T}(x,z,b,Q^2) = x \sum_{a} e_a^2 \left[\left(f_1^i \otimes \mathcal{C}_{ia} \right) \left(\mathcal{C}_{aj} \otimes D_1^j \right) e^{-S} e^{-S_{NP}} \right]$

collinear PDF and FF calculable with pQCD

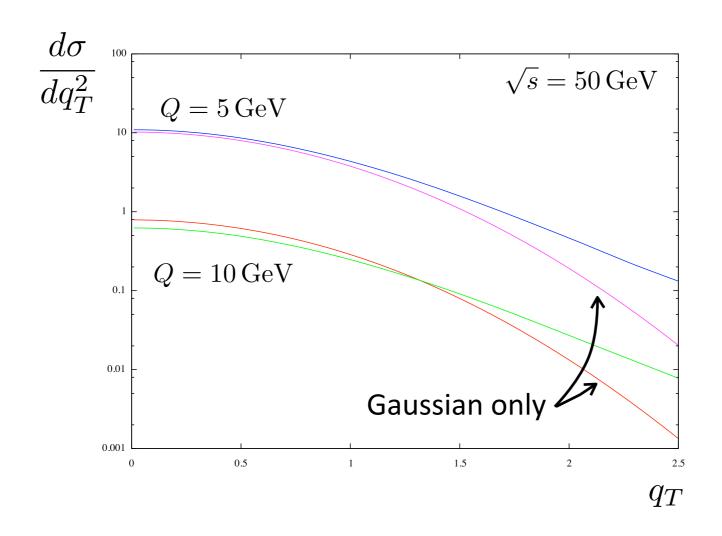


$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[\left(\mathbf{f_1^i} \otimes \mathcal{C}_{ia} \right) \left(\mathcal{C}_{aj} \otimes \mathbf{D_1^j} \right) e^{-S} \left(1 - e^{-S_{NP}} \right) \right]$$

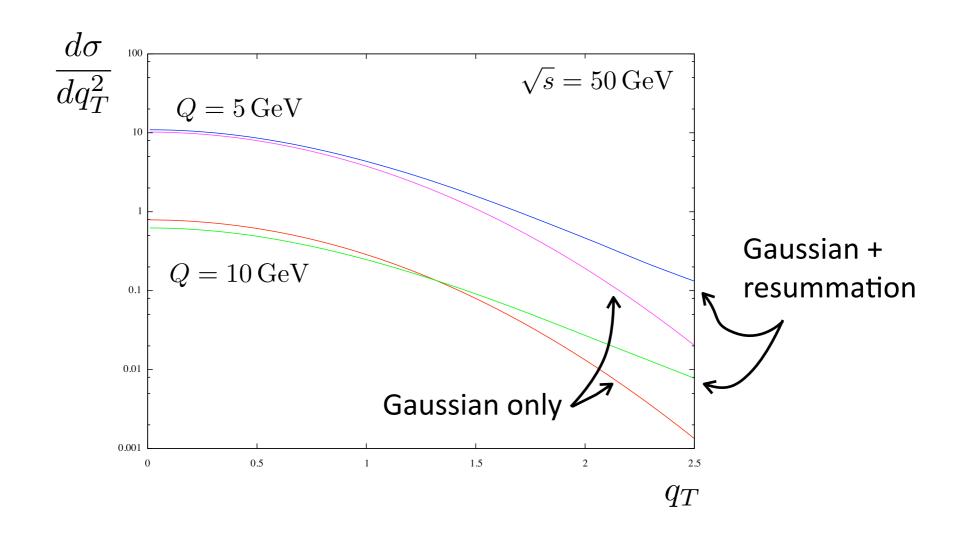
Example of resummation effects



Example of resummation effects



Example of resummation effects



Leading-log formula

Ellis, Veseli, NPB 511 (98)

$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[f_1^a(x;[q_T^2]) D_1^a(z;[q_T^2]) e^{-S} \left(1 - e^{-S_{NP}}\right) \right]$$

Leading-log formula

Ellis, Veseli, NPB 511 (98)

$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[f_1^a(x;[q_T^2]) D_1^a(z;[q_T^2]) e^{-S} \left(1 - e^{-S_{NP}}\right) \right]$$

$$S(q_T^2, Q^2) = -\int_{q_T^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} 2C_F \log \frac{Q^2}{\mu^2}$$

Leading-log formula

Ellis, Veseli, NPB 511 (98)

$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[f_1^a(x;[q_T^2]) D_1^a(z;[q_T^2]) e^{-S} \left(1 - e^{-S_{NP}}\right) \right]$$

$$S(q_T^2, Q^2) = -\int_{q_T^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} 2C_F \log \frac{Q^2}{\mu^2}$$

$$\alpha_s(\mu^2) = \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)}$$

Nonperturbative part

Kulesza, Stirling, JHEP 12 (03)

$$S_{NP} = -\frac{q_T^2}{\langle q_T^2 \rangle}$$

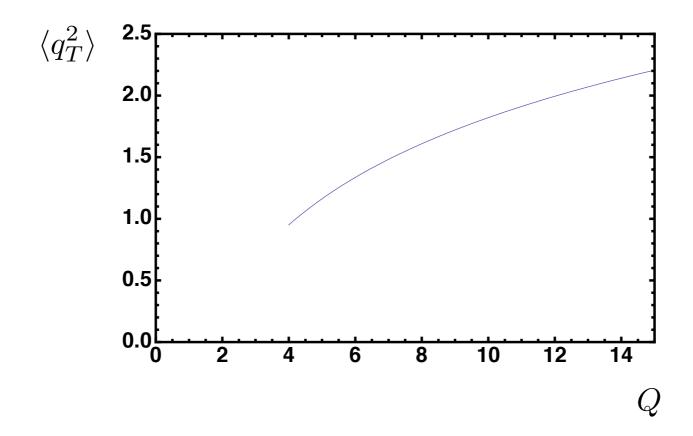
$$\frac{1}{\langle q_T^2 \rangle} = 0.20 + 0.95 \log \left(\frac{Q}{3.2}\right) + 1.56 \log \left(\frac{\sqrt{s}}{19.4}\right)$$

Nonperturbative part

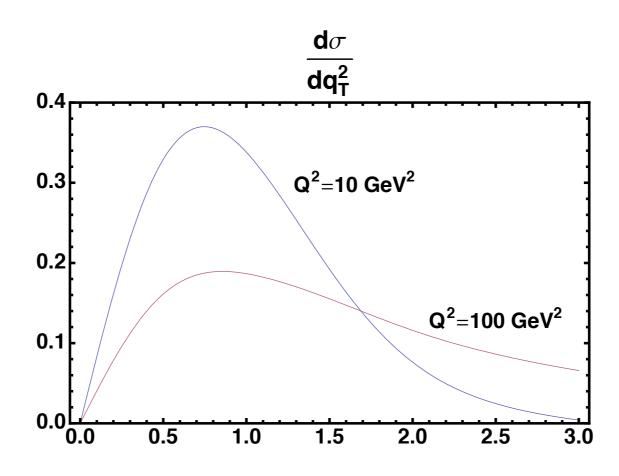
Kulesza, Stirling, JHEP 12 (03)

$$S_{NP} = -\frac{q_T^2}{\langle q_T^2 \rangle}$$

$$\frac{1}{\langle q_T^2 \rangle} = 0.20 + 0.95 \log \left(\frac{Q}{3.2}\right) + 1.56 \log \left(\frac{\sqrt{s}}{19.4}\right)$$



Leading-log evolution



$$f_1^{\text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{p_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\text{NS}}(x) + \left(P_{qq} \otimes f_1^{\text{NS}} \right) \right]$$

$$f_1^{\text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{p_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\text{NS}}(x) + \left(P_{qq} \otimes f_1^{\text{NS}} \right) \right]$$

$$\frac{\boldsymbol{p}_T^2}{2M^2} f_{1T}^{\perp \text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{M}{\boldsymbol{p}_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_{1T}^{\perp (1) \text{NS}}(x) + \ldots \right]$$

$$f_1^{\text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{p_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\text{NS}}(x) + \left(P_{qq} \otimes f_1^{\text{NS}} \right) \right]$$

$$\frac{\boldsymbol{p}_T^2}{2M^2} f_{1T}^{\perp \text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{M}{\boldsymbol{p}_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_{1T}^{\perp (1) \text{NS}}(x) + \ldots \right]$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \ldots \right]$$

$$f_1^{\text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\mathbf{p}_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\text{NS}}(x) + \left(P_{qq} \otimes f_1^{\text{NS}} \right) \right]$$

$$\frac{\boldsymbol{p}_{T}^{2}}{2M^{2}} f_{1T}^{\perp \text{NS}}(x, p_{T}^{2}) = \frac{\alpha_{s}}{2\pi^{2}} \frac{M}{\boldsymbol{p}_{T}^{2}} \left[\left(\frac{L(\eta^{-1})}{2} - C_{F} \right) f_{1T}^{\perp (1) \text{NS}}(x) + \ldots \right]$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \ldots \right]$$

$$\frac{q_T}{M} F_{UT,T}^{\sin(\phi_h - \phi_s)} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[-f_{1T}^{\perp(1)a}(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \ldots \right]$$

$$f_1^{\text{NS}}(x, p_T^2) = \frac{\alpha_s}{2\pi^2} \frac{1}{\boldsymbol{p}_T^2} \left[\left(\frac{L(\eta^{-1})}{2} - C_F \right) f_1^{\text{NS}}(x) + \left(P_{qq} \otimes f_1^{\text{NS}} \right) \right]$$

$$\frac{\boldsymbol{p}_{T}^{2}}{2M^{2}} f_{1T}^{\perp \text{NS}}(x, p_{T}^{2}) = \frac{\alpha_{s}}{2\pi^{2}} \frac{M}{\boldsymbol{p}_{T}^{2}} \left[\left(\frac{L(\eta^{-1})}{2} - C_{F} \right) f_{1T}^{\perp (1) \text{NS}}(x) + \ldots \right]$$

$$F_{UU,T} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[f_1^a(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \ldots \right]$$

$$\frac{q_T}{M} F_{UT,T}^{\sin(\phi_h - \phi_s)} = \frac{1}{q_T^2} \frac{\alpha_s}{2\pi^2 z^2} \sum_a x e_a^2 \left[-f_{1T}^{\perp (1)a}(x) D_1^a(z) L\left(\frac{Q^2}{q_T^2}\right) + \ldots \right]$$

Collins asymmetry, b space analysis

D. Boer, NPB 806 (08)

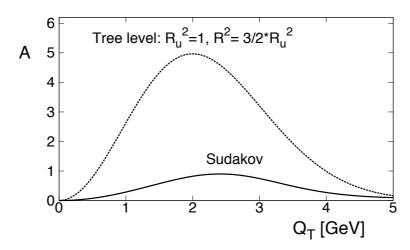


FIG. 6: The asymmetry factor $\mathcal{A}(Q_T)$ at $Q=10\,\text{GeV}$ (solid curve) and the tree level quantity $\mathcal{A}^{(0)}(Q_T)$ using $R_u^2=1\,\text{GeV}^{-2}$ and $R^2/R_u^2=3/2$. Both factors are given in units of M^2 .

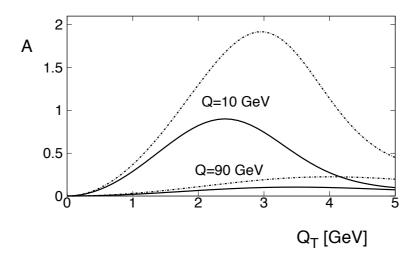


FIG. 5: The asymmetry factor $\mathcal{A}(Q_T)$ (in units of M^2) at $Q = 10 \,\text{GeV}$ and $Q = 90 \,\text{GeV}$. The solid curves are obtained with the method explained in the text; the dashed-dotted curves are from the earlier analysis of Ref. [64].

$$\frac{\partial f_1^{\text{NS}}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_1^{\text{NS}}(\xi,\mu^2) P_{qq}(z) \Big|_{z=x/\xi}$$

$$\frac{\partial f_1^{\text{NS}}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_1^{\text{NS}}(\xi,\mu^2) P_{qq}(z) \Big|_{z=x/\xi}$$

$$\frac{\partial \mathcal{T}_{q,F}(x,x,\mu_{F})}{\partial \ln \mu_{F}^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \left\{ P_{qq}(z) \, \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) + \frac{C_{A}}{2} \left[\frac{1+z^{2}}{1-z} \left[\mathcal{T}_{q,F}(\xi,x,\mu_{F}) - \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) \right] + z \, \mathcal{T}_{q,F}(\xi,x,\mu_{F}) \right] + \frac{C_{A}}{2} \left[\mathcal{T}_{\Delta q,F}(x,\xi,\mu_{F}) \right] \right\},$$

$$\frac{\partial f_1^{\text{NS}}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_1^{\text{NS}}(\xi,\mu^2) P_{qq}(z) \Big|_{z=x/\xi}$$

$$\frac{\partial \mathcal{T}_{q,F}(x,x,\mu_{F})}{\partial \ln \mu_{F}^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \left\{ P_{qq}(z) \, \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) + \frac{C_{A}}{2} \left[\frac{1+z^{2}}{1-z} \left[\mathcal{T}_{q,F}(\xi,x,\mu_{F}) - \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) \right] + z \, \mathcal{T}_{q,F}(\xi,x,\mu_{F}) \right] + \frac{C_{A}}{2} \left[\mathcal{T}_{\Delta q,F}(x,\xi,\mu_{F}) \right] \right\}, \qquad \qquad \mathcal{T}_{F}(x,x) \equiv 2M f_{1T}^{\perp(1)}(x)$$

$$\frac{\partial f_1^{\text{NS}}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_1^{\text{NS}}(\xi,\mu^2) P_{qq}(z) \Big|_{z=x/\xi}$$

$$\frac{\partial \mathcal{T}_{q,F}(x,x,\mu_{F})}{\partial \ln \mu_{F}^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \left\{ P_{qq}(z) \, \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) + \frac{C_{A}}{2} \left[\frac{1+z^{2}}{1-z} \left[\mathcal{T}_{q,F}(\xi,x,\mu_{F}) - \mathcal{T}_{q,F}(\xi,\xi,\mu_{F}) \right] + z \, \mathcal{T}_{q,F}(\xi,x,\mu_{F}) \right] + \frac{C_{A}}{2} \left[\mathcal{T}_{\Delta q,F}(x,\xi,\mu_{F}) \right] \right\}, \qquad \qquad \mathcal{T}_{F}(x,x) \equiv 2M f_{1T}^{\perp(1)}(x)$$

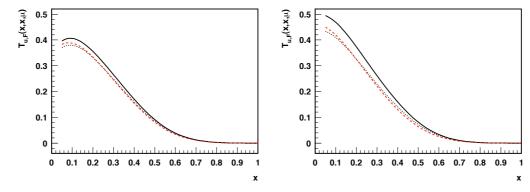
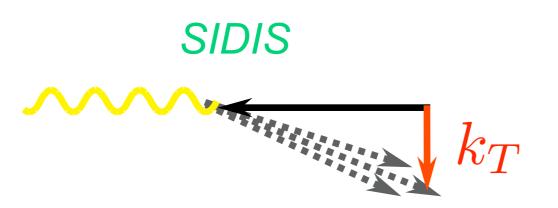
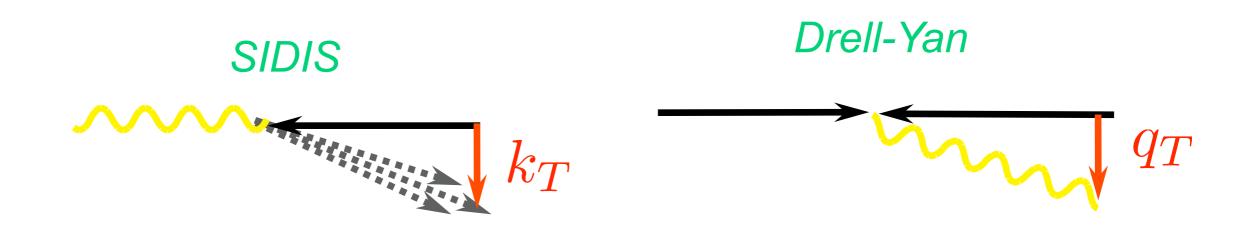
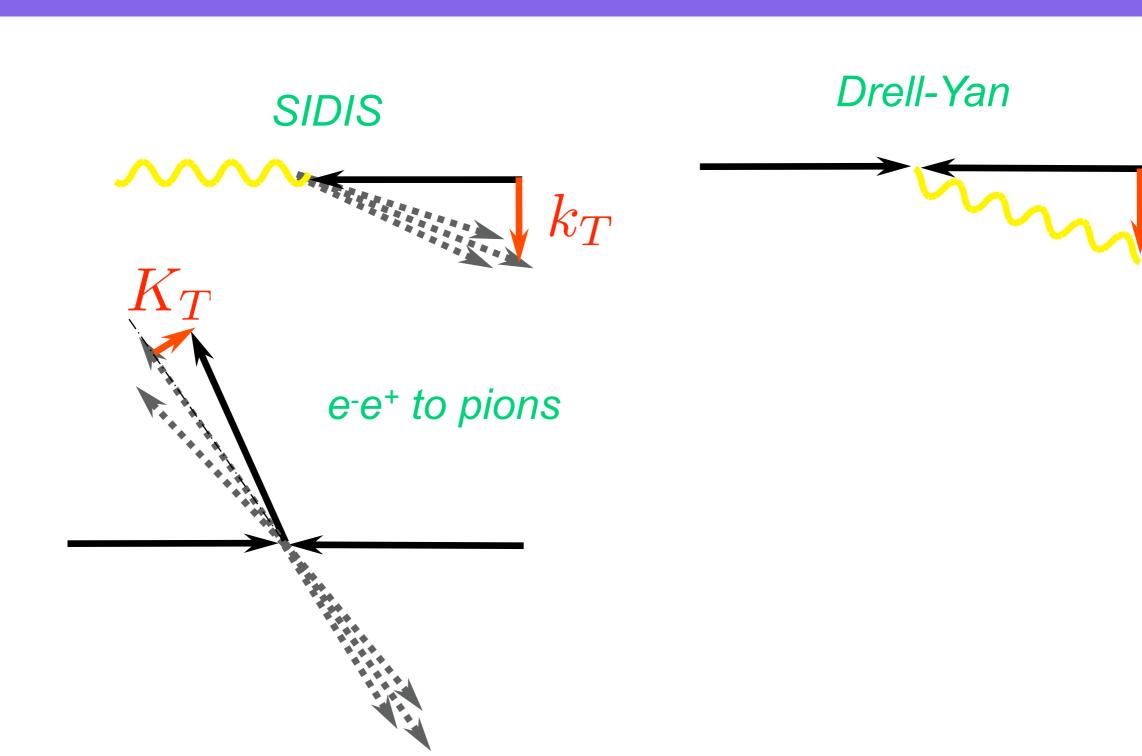


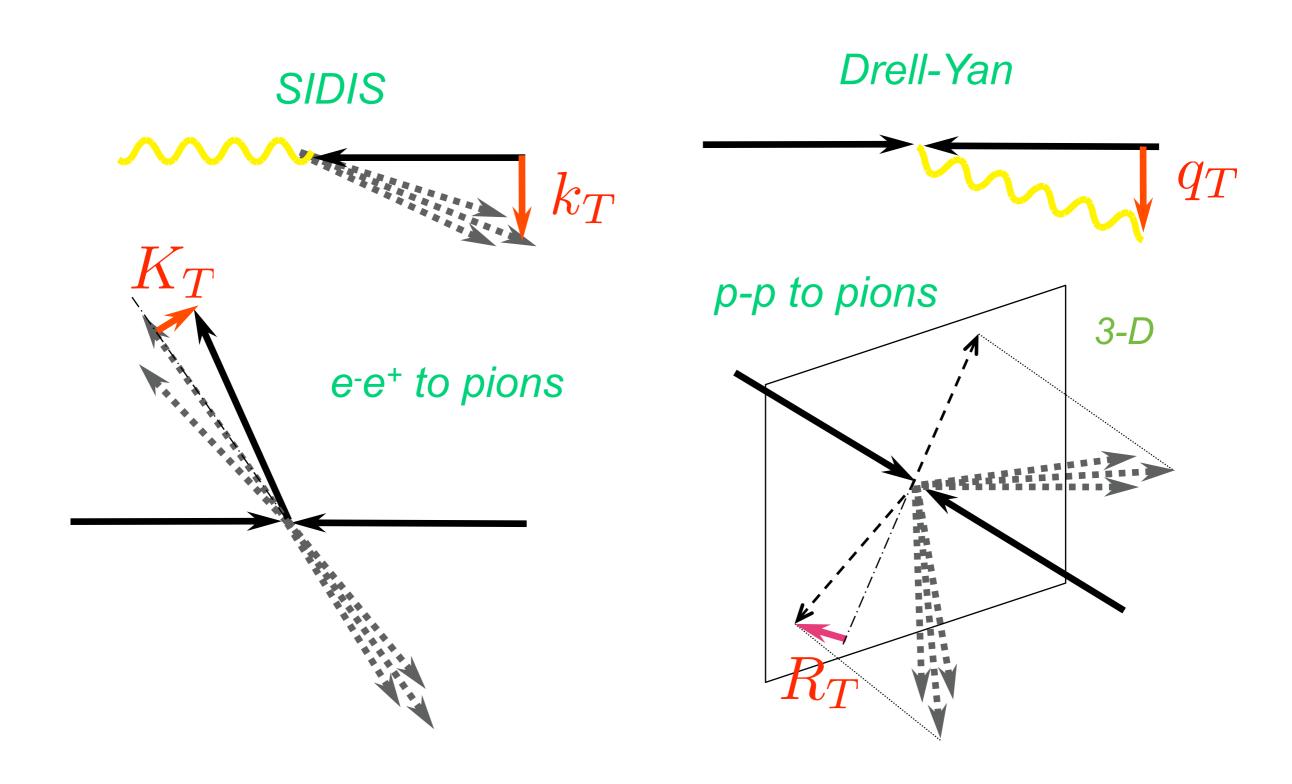
FIG. 12: Twist-3 up-quark-gluon correlation $T_{u,F}(x,x,\mu_F)$ as a function of x at $\mu_F = 4$ GeV (left) and $\mu_F = 10$ GeV (right). The factorization scale dependence is a solution of the flavor non-singlet evolution equation in Eq. (99). Solid and dotted curves correspond to $\sigma = 1/4$ and 1/8, while the dashed curve is obtained by keeping only the DGLAP evolution kernel $P_{qq}(z)$ in Eq. (99).

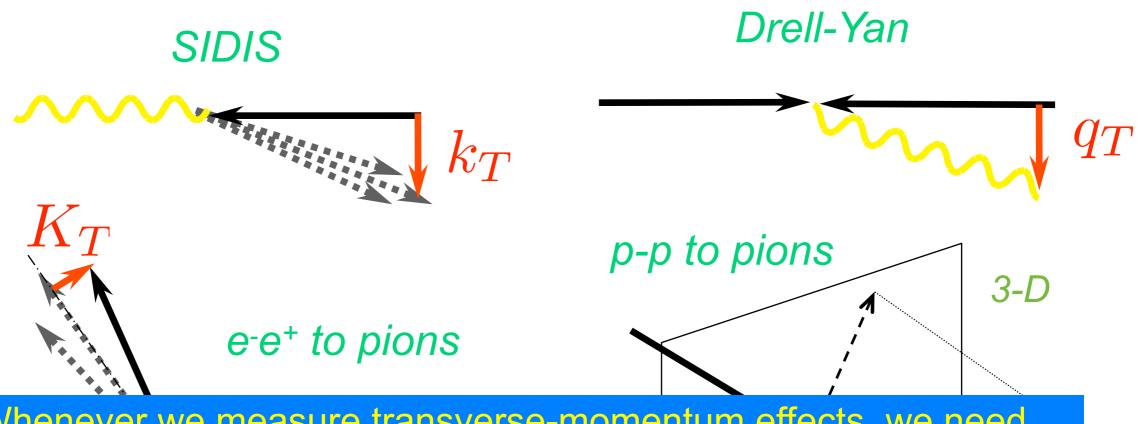
Factorization and universality







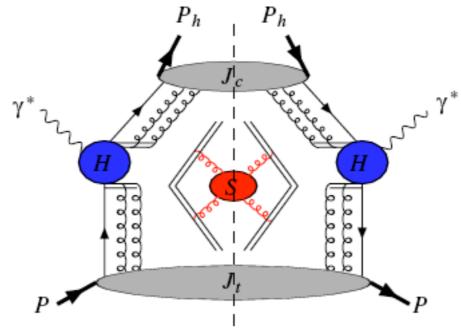




Whenever we measure transverse-momentum effects, we need k_T -factorization and we need transverse momentum dependent (or unintegrated) parton distributions

Collins, Soper, NPB 193 (81)

kt factorization

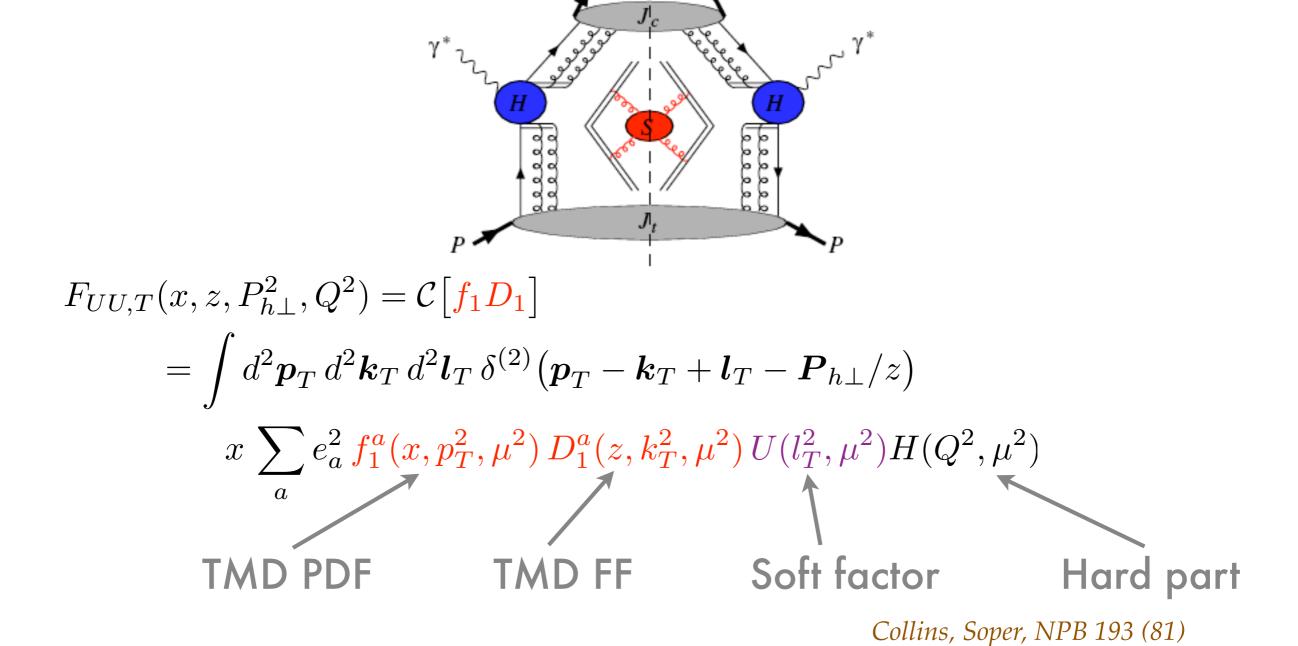


$$F_{UU,T}(x, z, P_{h\perp}^2, Q^2) = \mathcal{C}[f_1 D_1]$$

$$= \int d^2 \mathbf{p}_T d^2 \mathbf{k}_T d^2 \mathbf{l}_T \, \delta^{(2)}(\mathbf{p}_T - \mathbf{k}_T + \mathbf{l}_T - \mathbf{P}_{h\perp}/z)$$

$$x \sum_a e_a^2 f_1^a(x, p_T^2, \mu^2) D_1^a(z, k_T^2, \mu^2) U(l_T^2, \mu^2) H(Q^2, \mu^2)$$

kt factorization



Ji, Ma, Yuan, PRD 71 (05)

$$d\sigma_{DIS} = H_{DIS} \otimes f$$

$$d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = K_{DIS} \otimes g$$

$$d\sigma_{DY} = H_{DY} \otimes f$$

$$d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = -K_{DY} \otimes g$$

The real part of the gauge link remains unchanged

$$d\sigma_{DIS} = H_{DIS} \otimes f$$
 $d\sigma_{DY} = H_{DY} \otimes f$
$$d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = K_{DIS} \otimes g \qquad \qquad d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = -K_{DY} \otimes g$$

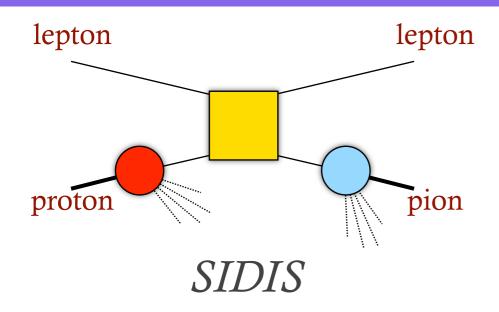
- The real part of the gauge link remains unchanged
- The imaginary part changes sign

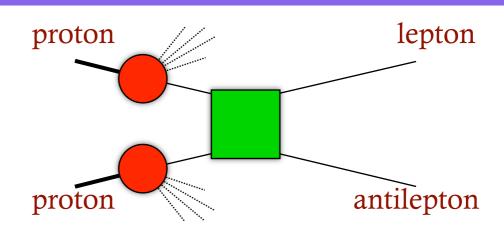
$$d\sigma_{DIS} = H_{DIS} \otimes f$$
 $d\sigma_{DY} = H_{DY} \otimes f$
$$d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = K_{DIS} \otimes g \qquad \qquad d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = -K_{DY} \otimes g$$

- The real part of the gauge link remains unchanged
- The imaginary part changes sign
- Observables sensitive to the imaginary part (e.g. single spin asymmetries) acquire an extra minus sign (generalization of universality)

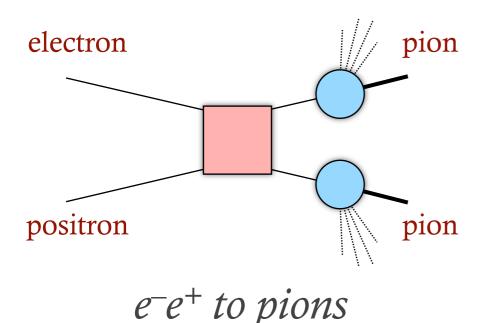
$$d\sigma_{DIS} = H_{DIS} \otimes f$$
 $d\sigma_{DY} = H_{DY} \otimes f$ $d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = K_{DIS} \otimes g$ $d\sigma_{DIS}^{\uparrow} - d\sigma_{DIS}^{\downarrow} = -K_{DY} \otimes g$

Generalized universality

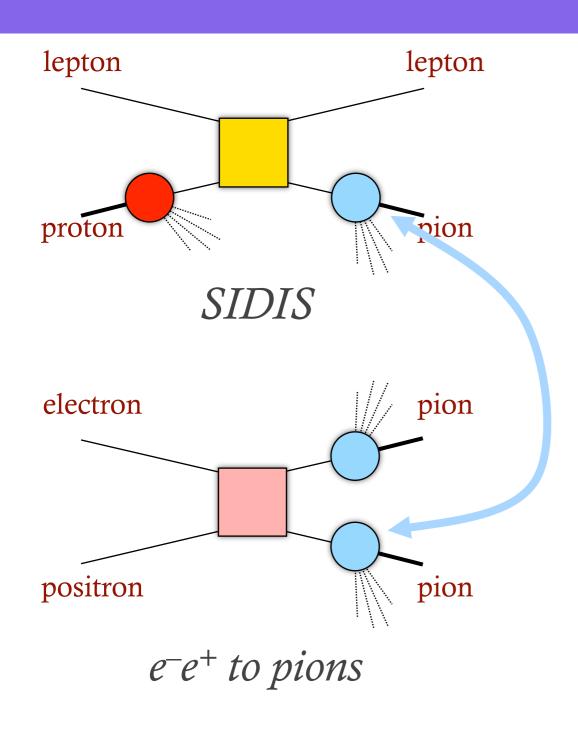


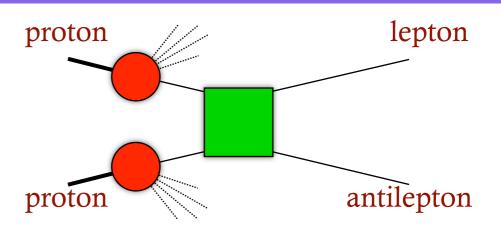


Drell-Yan



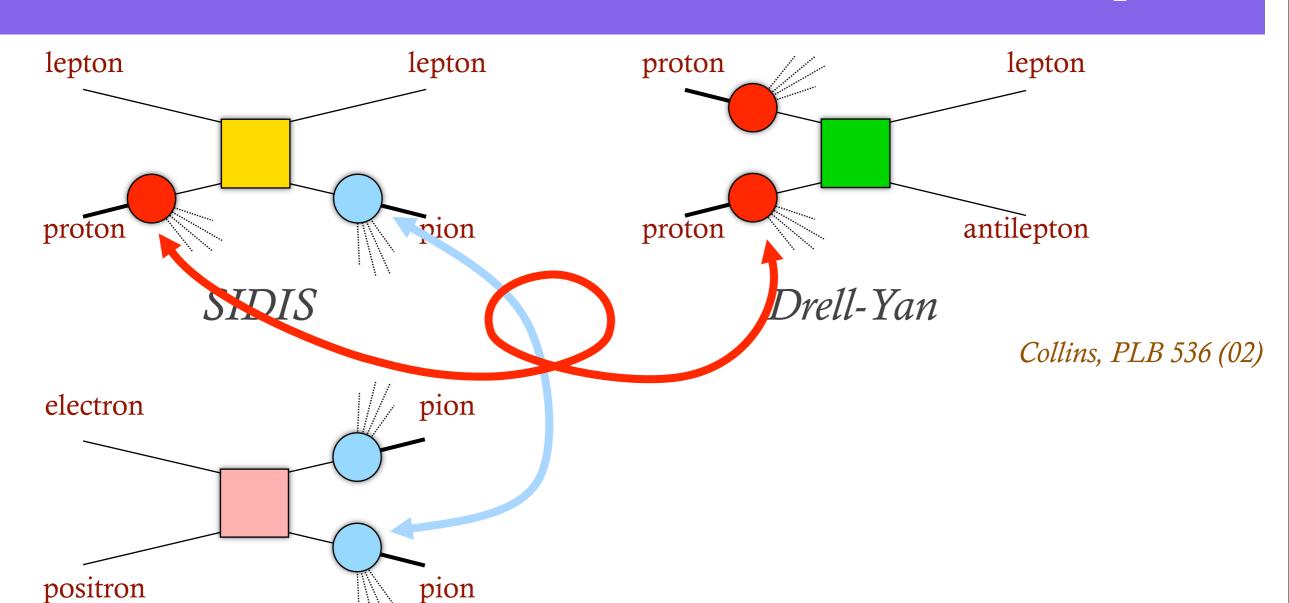
Generalized universality





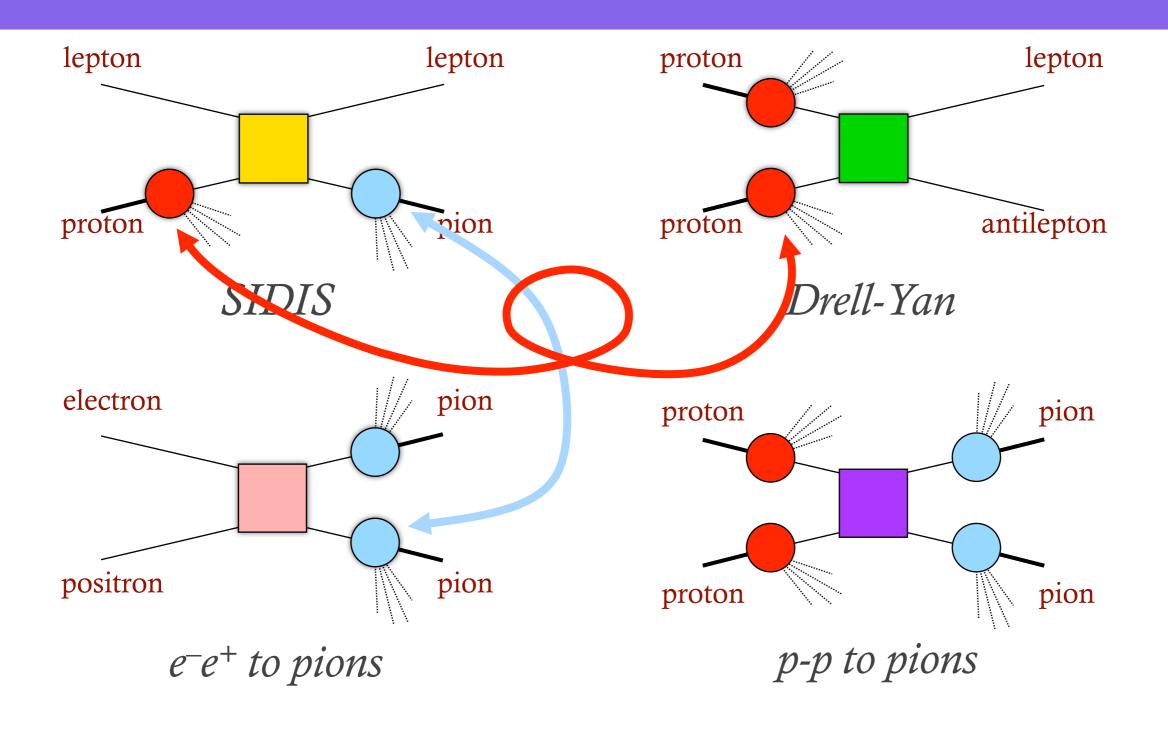
Drell-Yan

Generalized universality

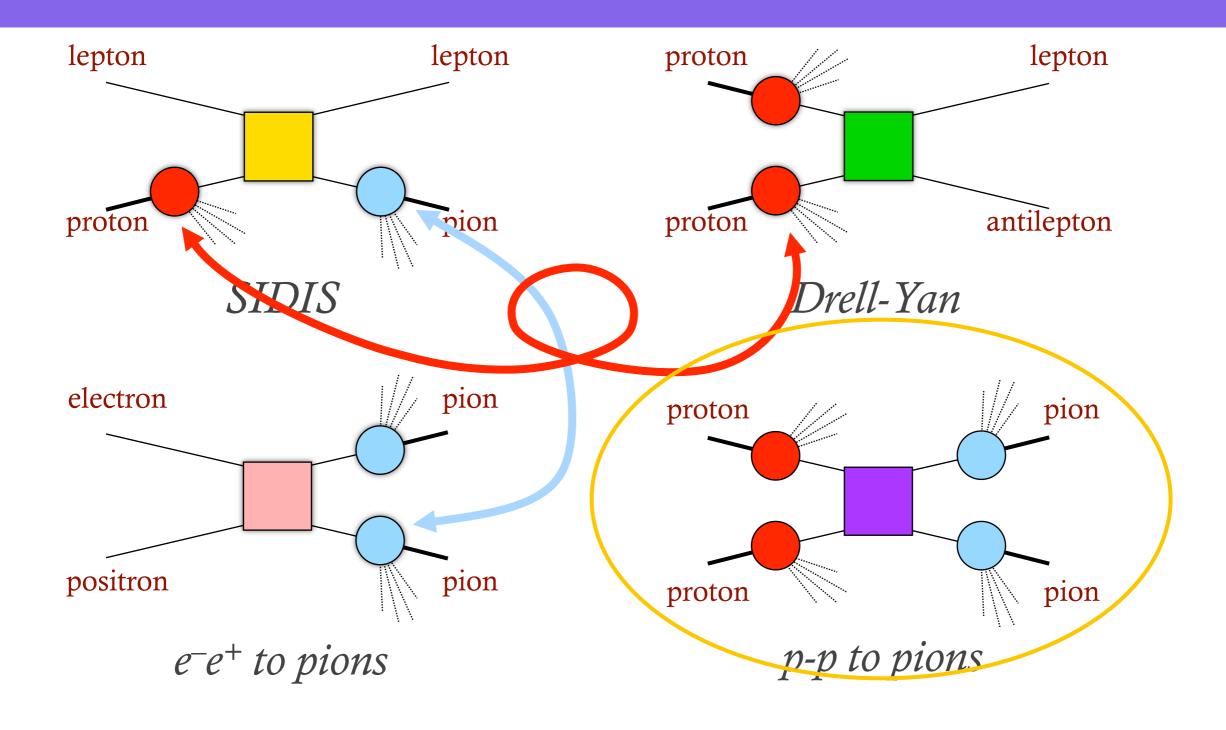


 e^-e^+ to pions

Hadrons to hadrons

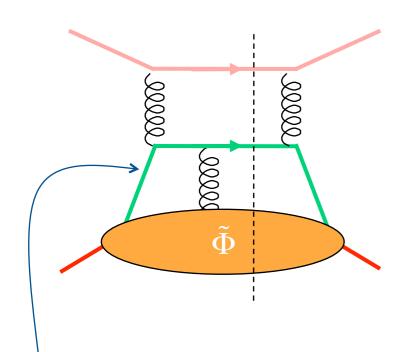


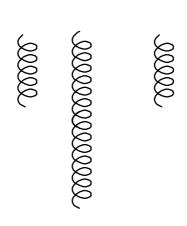
Hadrons to hadrons

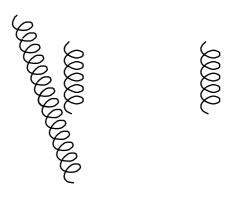


A slightly more complex example

Collins, Qiu, PRD 75 (07)







parton with charge g_1

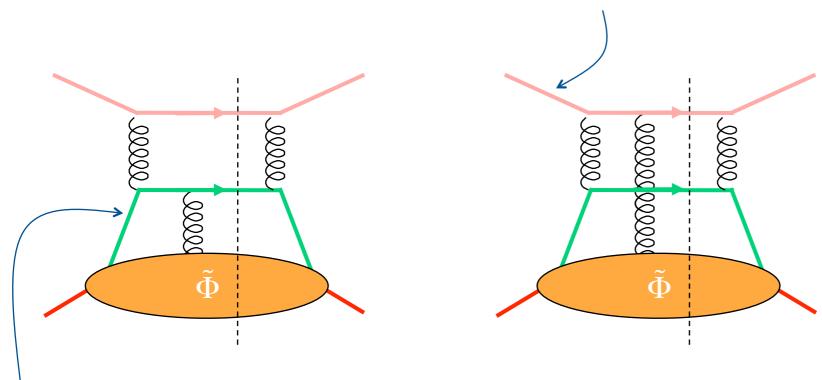
$$\frac{g_1}{[-l^+ + i\epsilon]}$$

$$\frac{g_2}{[-l^+ + i\epsilon]}$$

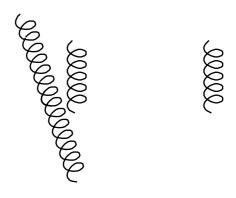
$$-\frac{g_2}{[-l^+ + i\epsilon]}$$

A slightly more complex example

parton with charge g_2



Collins, Qiu, PRD 75 (07)



parton with charge
$$g_1$$

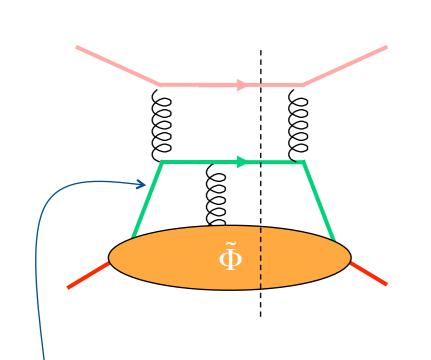
$$\frac{g_1}{[-l^+ + i\epsilon]}$$

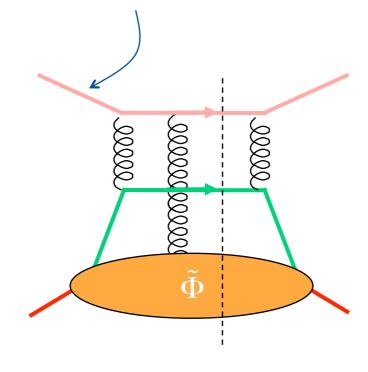
$$\frac{g_2}{[-l^+ + i\epsilon]}$$

$$-\frac{g_2}{[-l^+ + i\epsilon]}$$

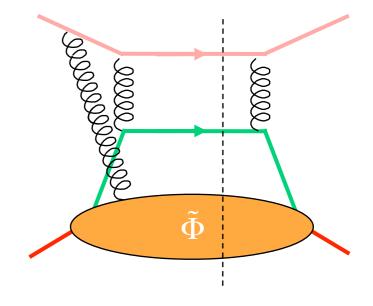
A slightly more complex example

parton with charge g_2





Collins, Qiu, PRD 75 (07)



parton with charge
$$g_1$$

$$\frac{g_1}{[-l^+ + i\epsilon]}$$

$$\frac{g_2}{[-l^+ + i\epsilon]}$$

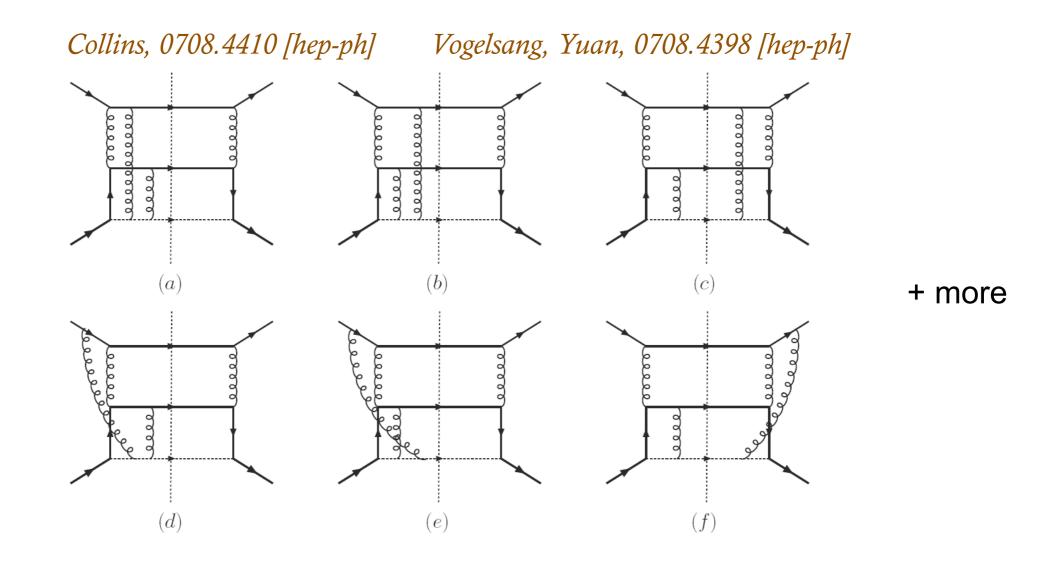
$$-\frac{g_2}{[-l^+ + i\epsilon]}$$

Consequences

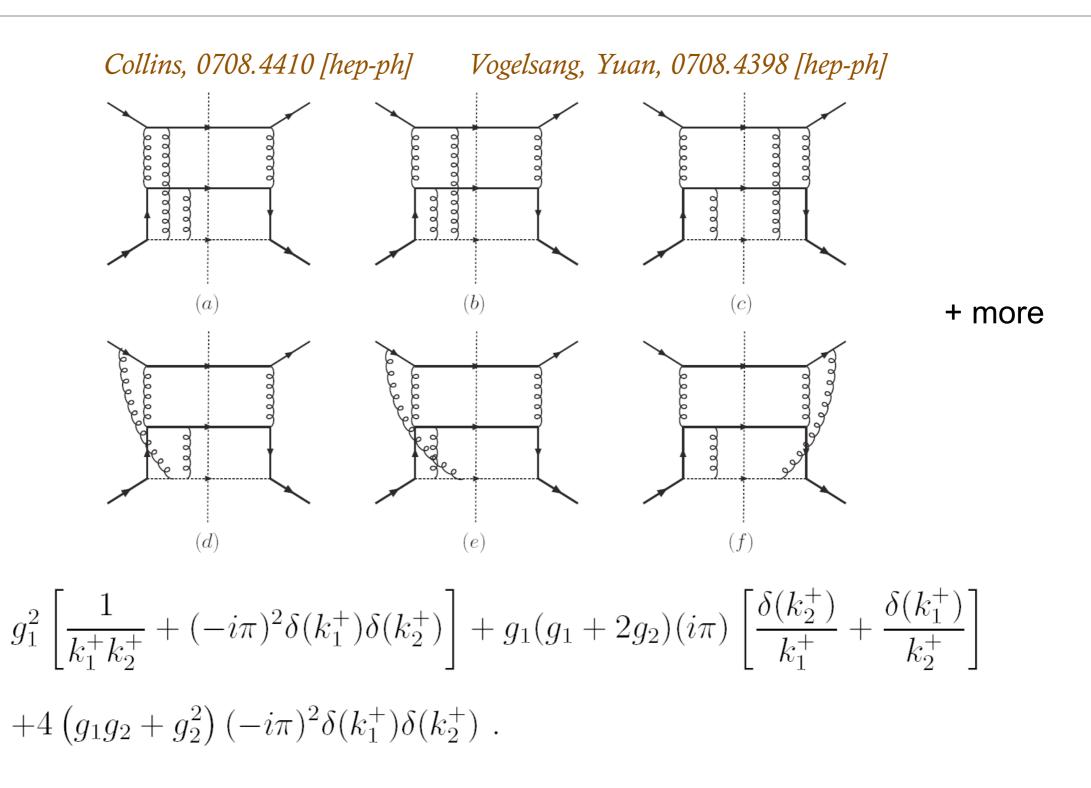
$$\frac{g_1}{[-l^+ + i\epsilon]} + \frac{g_2}{[-l^+ + i\epsilon]} - \frac{g_2}{[-l^+ + i\epsilon]} = -i\pi(2g_2 + g_1)\delta(l^+) - PV\frac{g_1}{l^+}$$

- Up to this order, the real part is unchanged, the imaginary part gets more than just a simple sign change and depends on the charge of ANOTHER parton!
- Still possible to get around it: PDFs could still be universal, but the ones sensitive to the imaginary part (those involved in single spin asymmetries) have to be multiplied by g₁/(2g₂+g₁)

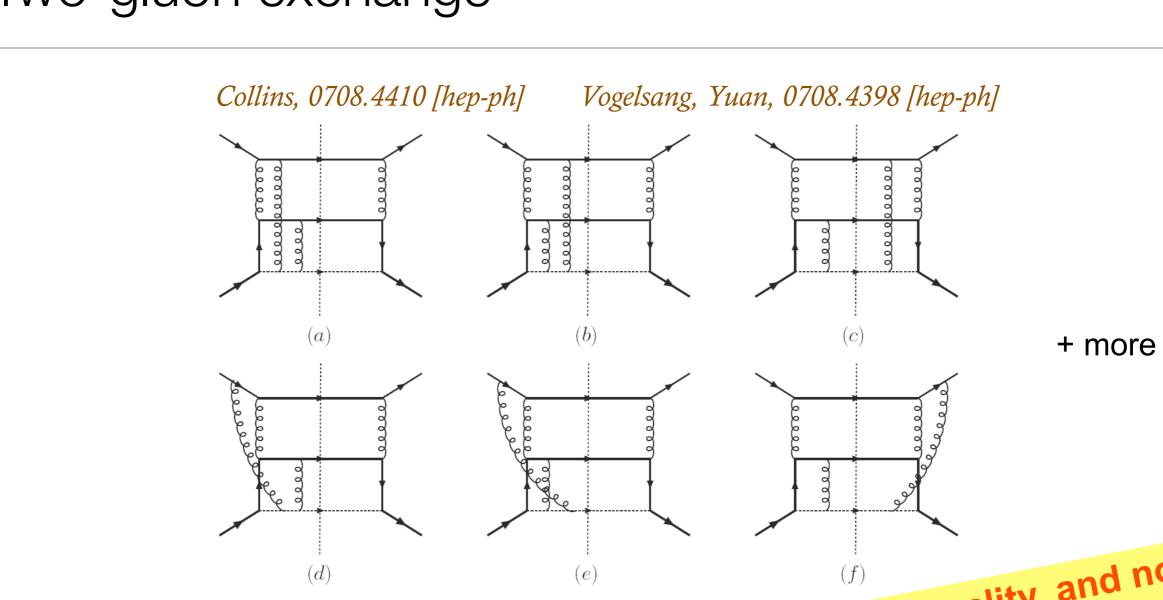
Two-gluon exchange



Two-gluon exchange



Two-gluon exchange

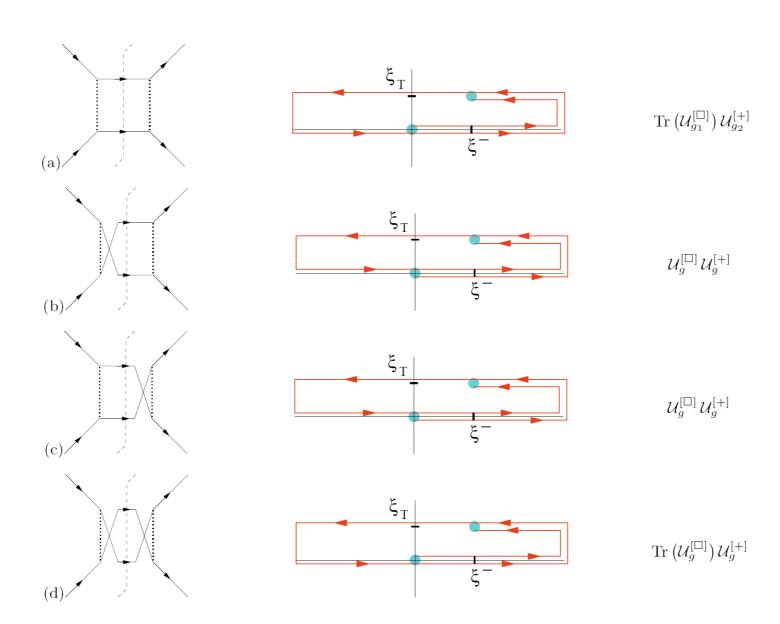


$$g_1^2 \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right]$$

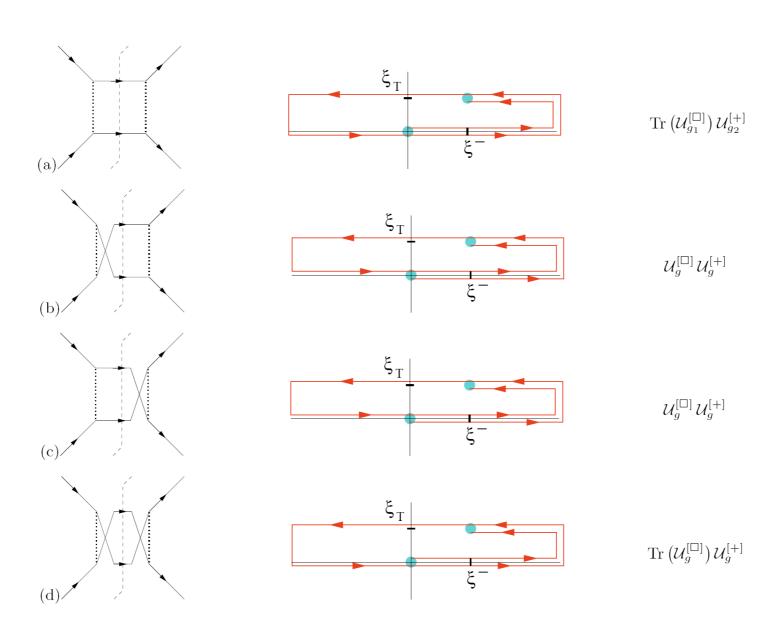
$$+4 \left(g_1g_2+g_2^2\right) (-i\pi)^2 \delta(k_1^+) \delta(k_2^+)$$
.

 $g_1^2 \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_2^+) \right] + \left[\frac{1}{k_1^+ k_2^+} + (-i\pi)^2 \delta(k_1^+) \delta(k_1^+)$

A forest of gauge links

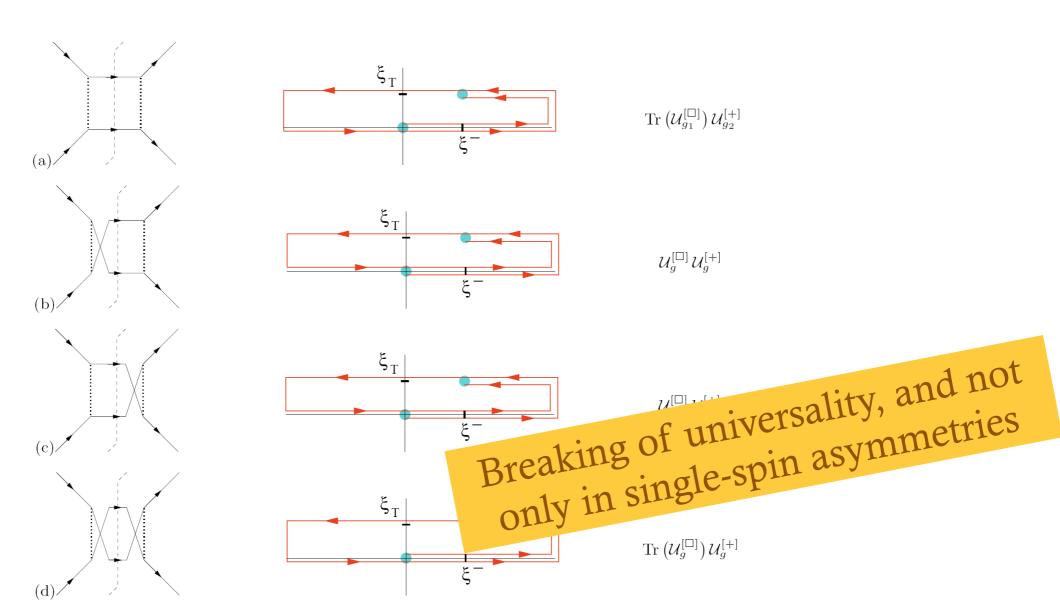


A forest of gauge links



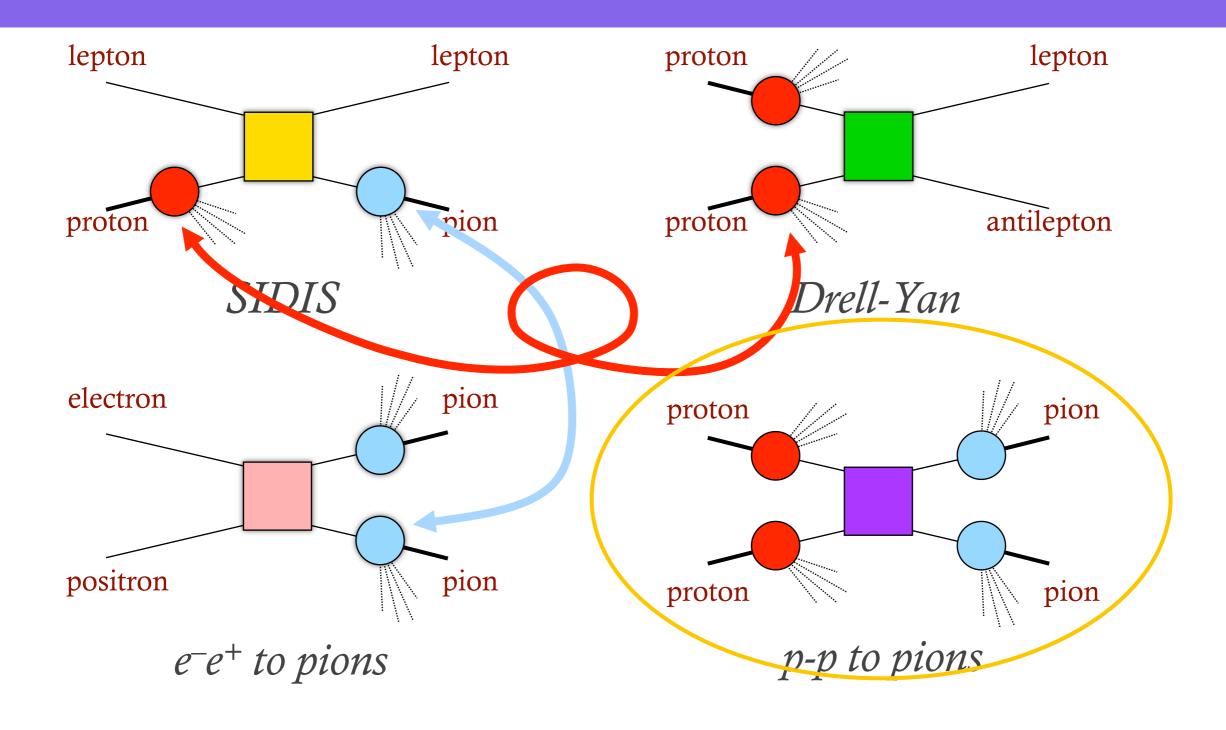
Bomhof, Mulders, Pijlman, PLB 596 (04) Collins, Qiu, PRD 75 (07) Vogelsang, Yuan, PRD76 (07)

A forest of gauge links

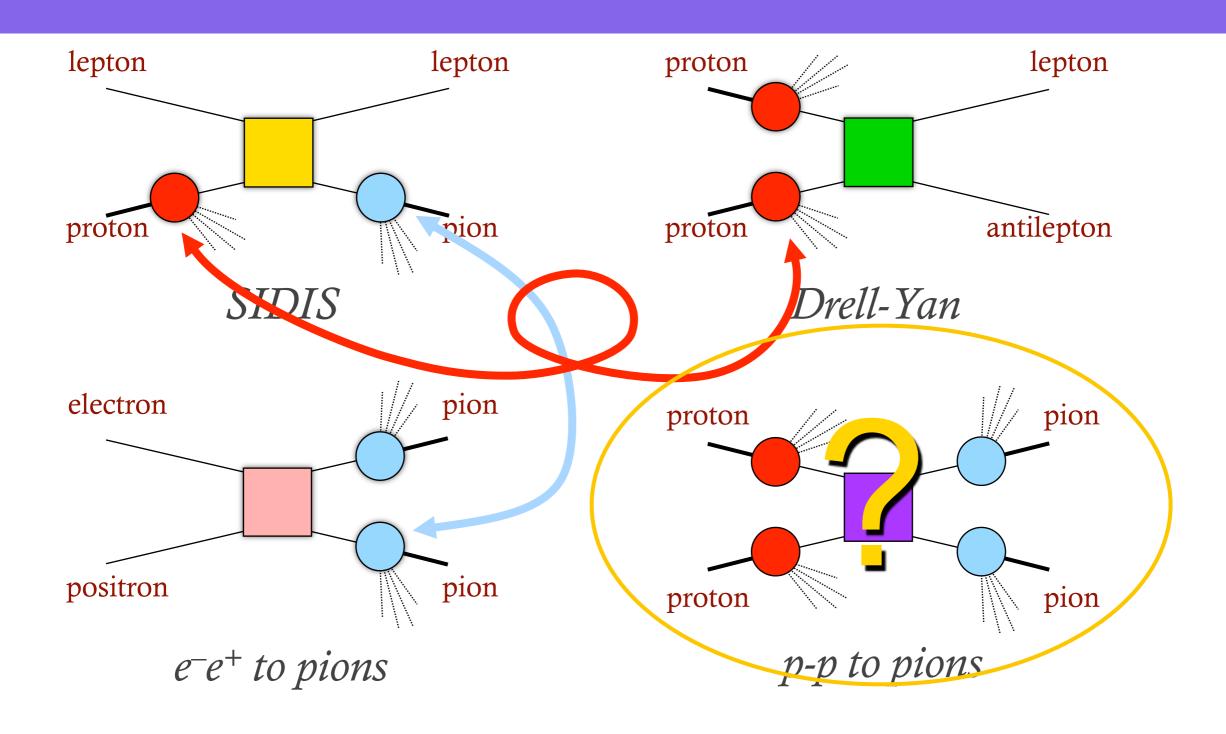


Bomhof, Mulders, Pijlman, PLB 596 (04) Collins, Qiu, PRD 75 (07) Vogelsang, Yuan, PRD76 (07)

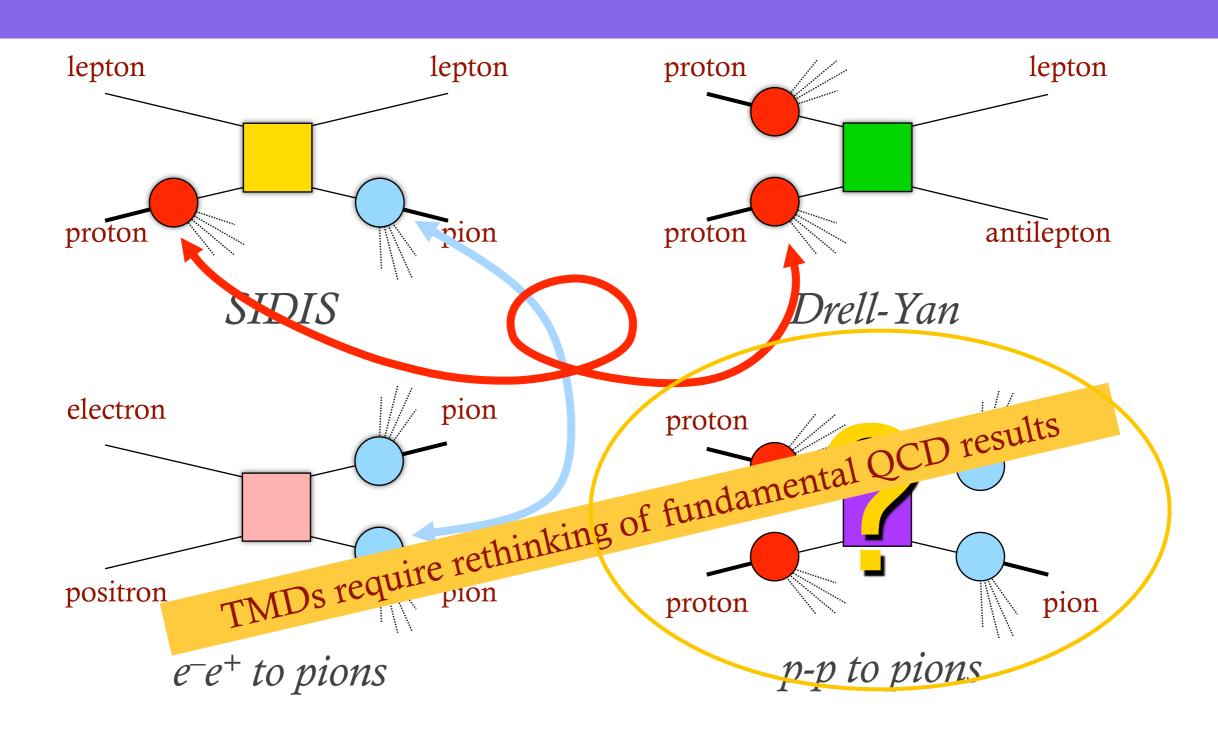
Hadrons to hadrons



Hadrons to hadrons



Hadrons to hadrons



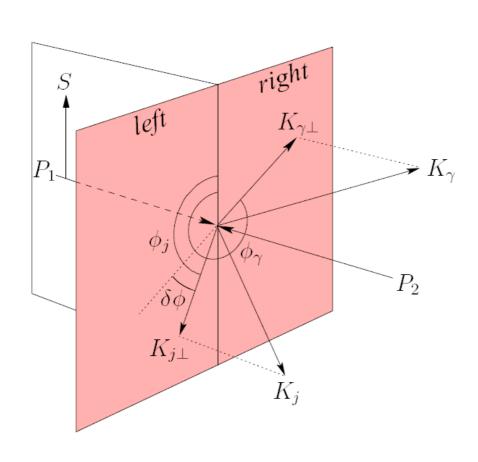
$$\int \frac{d\sigma_{DIS}}{dq_T} dq_T = H_{DIS} \otimes f$$

$$\int \frac{d\sigma_{pp}}{dq_T} dq_T = \mathbf{H}_{pp} \otimes \mathbf{f}$$

$$\int q_T \frac{d\sigma_{DIS}}{dq_T} dq_T = \mathbf{K_{DIS}} \otimes \mathbf{g}$$

$$\int q_T \frac{d\sigma_{DIS}}{dq_T} dq_T = K_{DIS} \otimes g \qquad \qquad \int q_T \frac{d\sigma_{pp}}{dq_T} dq_T = K_{pp} \otimes g' = CK_{pp} \otimes g$$

A.B., D'Alesio, Bomhof, Mulders, Murgia, PRL99 (07)



$p^{\uparrow}p \otimes \gamma$ jet X at RHIC

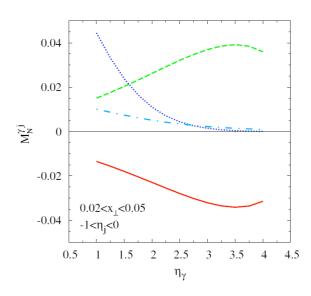
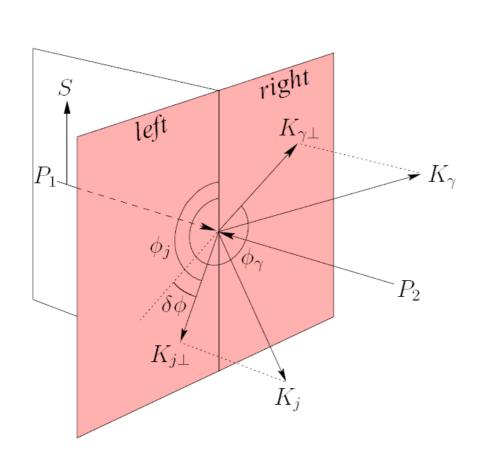


FIG. 5: Prediction for the azimuthal moment $M_N^{\gamma j}$ at $\sqrt{s}=200$ GeV, as a function of η_{γ} , integrated over $-1 \leq \eta_{j} \leq 0$ and $0.02 \leq x_{\perp} \leq 0.05$. Solid line: using gluonic-pole cross sections. Dashed line: using standard partonic cross sections. Dotted line: maximum contribution from the gluon Sivers function (absolute value). Dot-dashed line: maximum contribution from the Boer-Mulders function (absolute value).

A.B., D'Alesio, Bomhof, Mulders, Murgia, PRL99 (07)



"Standard" universality

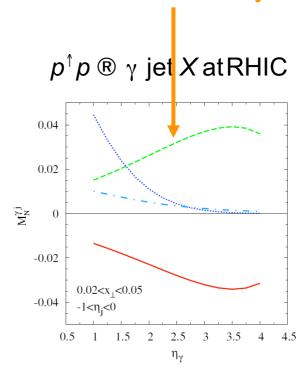
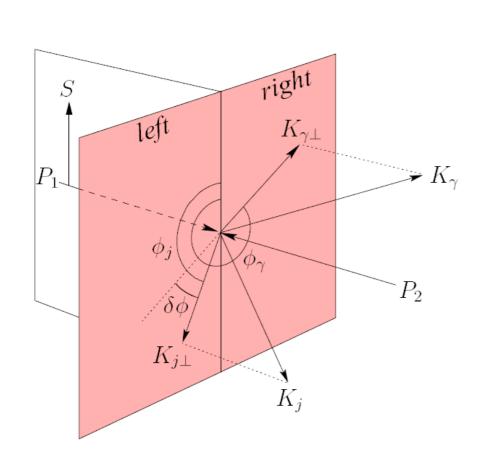


FIG. 5: Prediction for the azimuthal moment $M_N^{\gamma j}$ at $\sqrt{s}=200$ GeV, as a function of η_{γ} , integrated over $-1 \leq \eta_{j} \leq 0$ and $0.02 \leq x_{\perp} \leq 0.05$. Solid line: using gluonic-pole cross sections. Dashed line: using standard partonic cross sections. Dotted line: maximum contribution from the gluon Sivers function (absolute value). Dot-dashed line: maximum contribution from the Boer-Mulders function (absolute value).

A.B., D'Alesio, Bomhof, Mulders, Murgia, PRL99 (07)



"Standard" universality

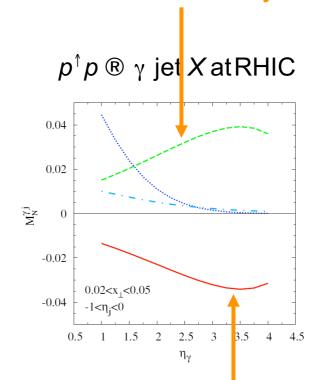


FIG. 5: Prediction for the azimuthal moment $M_N^{\gamma j}$ at $\sqrt{s}=200$ GeV, as a function of η_{γ} , integrated over $-1 \leq \eta_{j} \leq 0$ and $0.02 \leq x_{\perp} \leq 0.05$. Solid line: using gluonic-pole cross sections. Dashed line: using standard partonic cross sections. Dotted line: maximum contribution from the gluon Sivers function (absolute value). Dot-dashed line: maximum contribution from the Boer-Mulders function absolute value).

"Generalized" universality