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TMDs and transversity are relevant 

for all of  these issues
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see talk by S. Kuhn this morning
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• Different due to relativistic effects

• Different integral (tensor vs axial charge)

• Different evolution (no gluons vs gluons)

δΣ =0 .56
∆Σ = 0.18

Aoki et al., PRD 56 (97)
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AAC, Hirai et al. PRD 69 (04)
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Nucleon tensor charges
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Integrals over x of  transversity
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Relation to GPDs

24

• In general, parton distributions are 6 
dimensional (Wigner distributions)
• 3 dim. in coordinate space (GPDs)
• 3 dim. in momentum space (TMDs)

X. Ji, PRL 91 (03), Meissner et al. arXiv:0805.3165
for even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)
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see also talk by B. Pasquini
A.B., F. Conti, M. Radici, arXiv:0807.0323
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Nucleon tomography in momentum space
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Fundamental information on the nucleon structure

almost as important as standard collinear PDFs 
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• There are several different approaches to study unpolarized 
TMDs: nonperturbative contribution only, nonperturbative
+resummation, nonperturbative+parton shower from Monte 
Carlo generators...

• So far, essentially all analyses consider simple Gaussians 
with flavor-independent and usually also x-independent 
widths. Mostly Drell--Yan.

• Interesting analysis done at JLab Hall C: down quarks have 
higher transverse momentum than up quarks
                                                                                                                      Mkrtchyan et al., arXiv: 0709.3020



SIDIS data with hadron identification

FIG. 4: The P 2
t dependence of differential cross-sections per nucleus for π± production on hydrogen

(H) and deuterium (D) targets at 〈z〉=0.55 and 〈x〉=0.32. The solid lines show the result of the

seven-parameter fit described in the text. The error bars are statistical only. Systematic errors

are typically 4% (relative, see text for details). The average value of cos(φ) varies with P 2
t (see

Table 1.

(see Fig. 1). We assume further that sea quarks are negligible (typical global fits show less

than 10% contributions at x = 0.3). To make the problem tractable, we take only the

leading order terms in (kt/Q), which was shown to be a reasonable approximation for small

to moderate Pt in Ref. [6]. The simple model can then be written as:

σπ+
p = C[4c1(Pt)e−b+u P 2

t + (d/u)(D−/D+)c2(Pt)e−b−
d

P 2
t ]

σπ−
p = C[4(D−/D+)c3(Pt)e−b−u P 2

t + (d/u)c4(Pt)e−b+
d

P 2
t ]

σπ+
n = C[4(d/u)c4(Pt)e−b+

d
P 2

t + (D−/D+)c3(Pt)e−b−u P 2
t ]

σπ−
n = C[4(d/u)(D−/D+)c2(Pt)e−b−

d
P 2

t + c1(Pt)e−b+u P 2
t ]

(4)

where C is an arbitrary normalization factor, and the inverse of the total widths for each

9

JLab Hall C, Mkrtchyan et al., PLB665 (08)
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where C is an arbitrary normalization factor, and the inverse of the total widths for each

9

JLab Hall C, Mkrtchyan et al., PLB665 (08)Essential to study flavor structure
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• In atomic physics, 
wavefunctions with orbital 
angular momentum have 
distinct shapes 

• The most direct 
visualization of  these shapes 
is provided by scattering 
experiments and is in 
momentum space

f1(x, p2
T ) = |ψs−wave|2 + |ψp−wave|2 + . . .

At low pT |ψp−wave|2 ∼ p2
T



TMDs and orbital angular mom.
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Impossible to reproduce using simple Gaussians
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Twist-2 TMDs

• Some TMDs vanish if  there is no quark orbital angular 
momentum, e.g., Sivers function, g1T,...

• Any quantitative statement about the total orbital angular 
momentum is model-dependent



Sivers function



Two ingredients

35



Two ingredients

35

• Final-state interactions (included in the 
gauge link) 



Two ingredients

35

• Final-state interactions (included in the 
gauge link) 

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)



Two ingredients

35

• Final-state interactions (included in the 
gauge link) 

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

• Transverse-spin dependent distribution of  
quarks in transverse space



Two ingredients

35

• Final-state interactions (included in the 
gauge link) 

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

• Transverse-spin dependent distribution of  
quarks in transverse space

Burkardt, PRD 66 (02); Diehl, EPJ C25 (02); Diehl, Hägler, EPJ C44 (05)
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Side view Front view

NOTE: QCD tells us that the FSI has to be attractive, since quark 
and remnants form a color antisymmetric state

37



right

left

Final-state interactions

photon

Side view Front view

38



right

left

Final-state interactions

photon

Burkardt, PRD 66 (02)Chromodynamic lensing

Side view Front view

38



right

left

Change of sign in Drell-Yan

proton

photon

quarks

Side view Front view

antiquark

39



right

left

Change of sign in Drell-Yan

proton

photon

quarks

Side view Front view

antiquark

Clear-cut prediction of  QCD

Collins, PLB 536 (02)
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A distortion in the distribution of  quarks in transverse space can 
give rise to a nonzero Sivers function

The presence of  spin can distort the distribution of  quarks in 
transverse space (orbital angular momentum of  quarks is required)
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

• Data from HERMES, 
COMPASS (deuteron)
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

• Data from HERMES, 
COMPASS (deuteron)

• 96 data points (cf. 467 
points for Δq fits)
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

• Data from HERMES, 
COMPASS (deuteron)

• 96 data points (cf. 467 
points for Δq fits)

• χ2≈1.0



Sivers function extraction

42

9

(x
)

(1
)

 f
N

!
x

u
d

u
d

s
s

  
)

 f
(x

, 
k

N
!

x
u

d
u

d
s

s

x    (GeV)k

0

0.05

0

0.2

0.4

0.6

x = 0.1

-0.05

0

-0.6

-0.4

-0.2

0
x = 0.1

-0.02

0

0.02

-0.2

0

0.2
x = 0.1

-0.02

0

0.02

-0.2

0

0.2
x = 0.1

-0.02

0

0.02

-0.2

0

0.2
x = 0.1

-3
10

-2
10

-1
10 1

-0.02

0

0.02

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2 x = 0.1

FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

• Data from HERMES, 
COMPASS (deuteron)

• 96 data points (cf. 467 
points for Δq fits)

• χ2≈1.0

• Statistical uncertainty only 
(Δχ2≈17)
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data: S. Levorato, Transversity 08
prediction: Anselmino et al., 0805.2677
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Main messages
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• We have a first estimate of  transversity, but we have to go 
from exploration to precision

• TMDs allow a 3D momentum tomography

• All transverse-momentum dependences, starting from that of 
f1, are interesting and largely unknown 

• Strong indirect connections with orbital angular momentum

• We are going from exploration to precision


