A novel colour sensitive CMOS detector

G. Langfelder A. Longoni F. Zaraga

PRESENTATION OUTLINE
1. Colour Imaging Devices
2. TFD working principle and simulations
3. CMOS TFD experimental results
Colour Imaging basics

scene reconstruction +
colour detection =
colour imaging

• A **spatial sampling** photo-device (for instance a matrix of pixels) allows to get a black and white image of the captured scene

• To detect the colour each pixel must produce at least **three different functions** $f_i(\lambda)$ of the radiation wavelength to describe the 3D colour space
CFA patterns

• Colour Filter Arrays patterns

 – Possibility of sharp photoresponses
 – Bayer RGGB, CMYY
 – RGBE

 – Need for micro-filters deposition
 – Consistent light loss (60%)
 – Colour reconstruction leads to artefacts and errors
Multilayer Silicon sensors

• 3 colours Foveon®
 – Use of stacked junctions to simulate multi-layer films
 – Reduced light loss (no filter)
 – Higher colour fidelity
 – No more than 3 colours in triple well CMOS
 – Junctions depths depends on the chosen technology
The Transverse Field Detector (TFD)*

BASIC WORKING PRINCIPLE

- Carriers collection is performed through diagonal paths inside the semiconductor bulk
- Diagonal paths are generated by means of transverse electric fields
- Transverse field components are generated by surface contacts
Vertical sampling of light

• Contact #0 samples light from the surface until a limited depth, $f_0(\lambda)$

• Contact #1 samples light from the surface until a greater depth, $f_1(\lambda)$

• ...

• Contact #n samples light from the rest of the depleted region, $f_n(\lambda)$

• By means of the comparison of the different contacts charge, light distribution vs. depth can be reconstructed from which colour is determined!!
Device level: pn junction TFD

- The simplest implementation in a completely standard CMOS technology
- No change in the technology process flow is need for this solution
- As it is, the simplest solution does not work: it needs several improvements

Very shallow N+ implants:
- Generation of the transverse field configuration
- Low blue light absorption

Low-doped P-type epitaxial layer of sufficient thickness W:
- A few μm depletion region for electrons drift
- Collection of absorbed red light

A detailed analysis of this region

Part 2: TFD working principle and simulations
N⁺ isolation (1): insertion of P⁺

- **The Epi-layer does not provide isolation** between different N⁺ contacts… A huge leakage current flows when a voltage is set between contiguous N⁺

- **Is the insertion of shallow P-type regions** between N⁺ effective in providing isolation? Yes, but…
N⁺ isolation (2): insertion of STI

- In CMOS technologies, N⁺ and P⁺ dopings are generally very high (above 10^{20} cm⁻³).

- Contiguous N⁺/P⁺ regions constitute a tunnel diode with very low (few mV) on voltage.

- To avoid these undesired effects, Shallow Trench Isolation (STI) can be used for contiguous highly doped region isolation.
N⁺ isolation (3): experimental data

#0 dark current (#1 at the same bias voltage as #0)

#0 and #1 current exchange with #1 at 2.9 V and #0 sweeping

#0 Dark Current [pA]

#0 Reverse Voltage [V]

#0, #1 Current [pA]

High current exchange

Low current exchange for ΔV₀,₁ < 1.25 V

P⁺ contact always at 0 V
3 colours TFD device design

- Insertion of external N well allows to lower the outer voltage (V#2 ~ V#1) and to better isolate pixels.

- Total 3 colours pixel size is ~ 5 µm (4 colours 5.8 µm).

- Following ISE-TCAD simulations performed at these biasing values: V#0 = 1.0 V, V#1 = 2.1 V, V#2 = 2.3 V, V_EPI = 0 V.
Charge collection inside the TFD

• The Electric Field Streamlines schematically represent electrons drift paths inside the depleted region.
• A Monte-Carlo simulation for diffusion describes electrons diffusion paths in undepleted region.

Part 2: TFD working principle and simulations.

ELECTRIC FIELD STREAMLINES
ELECTRONS EQUI-CONCENTRATION CURVES
AND QUASI-FERMI GRADIENT

#0 #1 #2

4 μm epitaxial layer

#0 = 1.0 V
#1 = 2.1 V
#2 = 2.3 V
Vepi_p = 0 V

#0 #1 #2 #1
TFD Energy Band graph

- The resulting energy band graph with contacts increasingly biased from the center to the border

- \(V_{#0} = 1.0 \) V
- \(V_{#1} = 2.1 \) V
- \(V_{#2} = 2.3 \) V
- \(V_{\text{epi}_p} = 0 \) V

Part 2: TFD working principle and simulations
90 nm CMOS Technology TFD

TEST STRUCTURE: ARRAY OF 34 PIXEL STRIPS READ TOGETHER
- A 3-colour structure (results analyzed in the following slides)
 - A 4-colour structure (shown below)

NO FILL FACTOR OPTIMIZATION SO FAR (~ foreseen FF for smaller structures is > 60%)
A charge pump and a current mirror are designed once for the whole matrix (shadowed in blue).

Each pixel includes a single transistor charge amplifier (M_3), a current generator (M_2), a follower (M_4), a reset transistor (M_R), a select transistor (not shown) and a capacitance (C_F).
Technology Quantum Efficiency

- The technology used for this first realization of the device has alternated layers of different dielectrics where metals are not drawn.

- It is expected to result in strong wavelength selective reflectivity, as shown in the simulation below.

Quantum efficiency measured from a simple test diode.

<table>
<thead>
<tr>
<th>Incident Wave (90°)</th>
<th>Reflectivity [%]</th>
<th>Wavelength [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.55</td>
<td>450</td>
</tr>
<tr>
<td>d₁=600 nm</td>
<td>0.35</td>
<td>500</td>
</tr>
<tr>
<td>d₂=1100 nm</td>
<td>0.30</td>
<td>550</td>
</tr>
<tr>
<td>d₃=578 nm</td>
<td>0.25</td>
<td>600</td>
</tr>
<tr>
<td>d₄=578 nm</td>
<td>0.20</td>
<td>650</td>
</tr>
<tr>
<td>d₅=578 nm</td>
<td>0.15</td>
<td>700</td>
</tr>
<tr>
<td>d₆=578 nm</td>
<td>0.10</td>
<td>750</td>
</tr>
<tr>
<td>d₇=578 nm</td>
<td>0.05</td>
<td>800</td>
</tr>
</tbody>
</table>

Part 3: CMOS
TFD design and experimental results.

Quantum efficiency measured from a simple test diode.

- Solutions:
 - Choose a technology without alternated dielectric layers.
 - Try to avoid dielectric deposition over the sensitive area.
Experimental Colour Results

- **Photoresponses** of the three different contacts biased at $V_{#0} = 1.45$ V, $V_{#1} = V_{#2} = 2.90$ V

- They can be considered as the **Equivalent Colour Filters** of this CMOS 90 nm TFD

- Though the presence of responsivity holes TFD performances remain good
Qualitative Colour Analysis

• A qualitative and quantitative instrument to verify colour representation is the *Macbeth Colour Checker (MCC)*

• It provides a set of known reference colours which can be used as a setup and adjustment standard in film and video calibration

• In the picture a simulation (through the ISET software) of the *acquisition through the TFD experimental colour filters* of the *MCC* is depicted
Quantitative Colour Analysis

- The 24 colours acquired through the TFD Colour Filters are represented (circles) in the CIExy diagram and on the CIELAB diagram.

- The lines starting from each circle lead to the original Macbeth Colour Checker point.

- Good colour agreement: mean MCC colour error in CIELAB space is $\Delta E_{ab} = 2.57$ (< 3, a good result for photography)
Final remarks

• A novel CMOS device has been developed
 – Isolation between N⁺ implants on low-doped epitaxial layer has been proved, through the insertion of combined P⁺ implants and shallow trenches (STI) between N⁺ implants

• Its primary application is colour detection
 – Major advantages: reduced light loss, no need for filters, higher colour fidelity, lower post processing, CMOS standard compatibility
 – Colour detection capabilities have been demonstrated
 – A compatible APS electronics has been demonstrated (with a foreseen Fill Factor > 60%)

• In the future...
 – Different ways to obtain small-area capacitance will be investigated, in order to keep a higher pixel fill factor with scaled dimensions
 – Four colours pixels (extended gamut), already designed, will be tested