Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

S. Nishida

KEK

NDIP2008

Jun. 17, 2007
Contents

• Introduction.
• 144ch HAPD
• HAPD Readout with ASIC
• Beam Test
• Summary

I. Adachia, R. Dolenecb, K. Harac, T. Iijimac, H. Ikedad, Y. Ishiie, H. Kawaie, S. Korparb,f, Y. Kozakaic, P. Križanb,g, E. Kurodai, Y. Miyazawah, S. Nishidaa, I. Nishizawai, S. Ogawaj, R. Pestotnikb, N. Sawafujij, S. Shiizukac, T. Sumiyoshih, M. Tabatae, Y. Uekih

aKEK, bJožef Stefan Institute, cNagoya Univ., dJAXA, eChiba Univ., fUniv. of Maribor, gUniv. of Ljubljana, hTokyo Univ. of Science, iTokyo Metropolitan Univ., jToho Univ.
Introduction

• PID has been a key issue in B factory experiments.
 • The situation is the same in future B factory:
 • $b \rightarrow d\gamma$ v.s. $b \rightarrow s\gamma$, flavour tagging ...
• ACC (Aerogel Cherenkov Counter) is used in Belle.
 • Threshold type
 • Separation only up to ~ 2GeV in the endcap region
• As an upgrade of the endcap ACC, we are developing Proximity Focusing Aerogel RICH.

S.Nishida (KEK)
Jun. 17, 2008
Development of 144ch HAPD for Aerogel RICH for Belle Upgrade
NDIP2008
Introduction

- Target: $4\sigma \pi/K$ separation at $1<p<4$ GeV/c.
- $\theta(\pi) - \theta(K) = 23$ mrad for 4 GeV/c particle (in case of aerogel radiator with $n=1.05$).
- Limited by the space.

The scheme of Aerogel RICH has been confirmed by a test using 4×4 array of flat-panel PMT (Hamamatsu H8500)

However, H8500 cannot be used in the magnetic field.
144ch HAPD

Requirement to photodetector

- Position sensitive (~ 5×5 mm²); Large effective area.
- Immune to 1.5T magnetic field.
- Coverage of Belle endcap region (~ 2×2 m²; 10⁵ channels)

Candidate: 144ch HAPD (Hybrid Avalanche Photo Detector)

- Developed with Hamamatsu Photonics.
- 144 channels, 4 APD chips (36ch/chip)
- Effective area 64mm×64mm (65%).
HAPD Performance

Noise level

- Bias voltage dependence of Noise.
- Measured with HV OFF.
- Noise level is estimated from the width of pedestal.
- Full depletion at >50V.
- Leakage current increases at ~300V.
- No large chip dependence.

Pulse Height Distribution

- Measured with HV ON.
- Light source: LED.

Clear separation between pedestal and 1 p.e. peak!!
HAPD Performance

\(\times 100\)

- Gain of 4 HAPD samples for each APD chip.
- Measured with HV \(-7\) kV.
- Typical gain 40000-100000.
- Avalanche gain depends on chip and bias voltage.
Readout with ASIC

Readout system requires:

- High density front-end electronics (100k ch)
- High gain with very low noise amplifiers
- Deadtime-less readout scheme (Pipeline)

We have developed ASICs for the front-end electronics.

- Production at VDEC (Tokyo Univ)
- Process: ROHM CMOS 0.35 [μm]
- Target Noise Level: 1200 [e] @ 80pF (HAPD)
- Std. Input Signal: 12000 e
- #(channel) = 18 [ch/chip]
- Power Consumption = 3 [mW/ch]
- Shaping time 0.3 ~ 2.0 [μs]
- Variable gain 1.25 ~ 20
- Common threshold.
- Channel-by-channel offset adjustment (±200 mV)

S. Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade
HAPD Readout with ASIC

- Distribution of output of ASIC (digital) for 1000 LED clocks.
- Irradiate 1 p.e. level photon to 1 channel.

Successfully readout 1 p.e. level signal from HAPD using ASIC for the first time!!

S. Nishida (KEK)
Jun. 17, 2008
Development of 144ch HAPD for Aerogel RICH for Belle Upgrade
NDIP2008
HAPD Readout with ASIC

- 2d scan with 0.4mm step.
- LED on x-y stage.
- Several dead channels from HAPD and ASIC. (0~3 per APD chip and 0~2 per ASIC)

Edge channels sometimes have inefficiency/cross-talk (distortion of electric field inside tubes)
(might be recovered in the magnetic field)
Beam Test at Fuji Beam Line

Bremsstrahlung photon $\rightarrow e^-$

~2 GeV electron beam converted from Bremsstrahlung photons from KEKB main ring (electron) at Fuji area (opposite site of Belle detector).

We performed two beam tests for Aerogel RICH

Mar 17th-23rd
June 5th-12th

S.Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008 11
Beam Test Setup

- Tracking using 2 MWPC
- 2×3 array of 144 ch HAPD
- HV at -7 kV.
- Bias voltage of HAPD is chosen at avalanche gain = 40.
 (or maximum bias voltage).
- Readout using 48 ASICs.
- ASIC offset is adjusted so that the noise is below the threshold.
 \rightarrow threshold is typically ~ 0.5 p.e. level, but depends on each channel's gain and noise level.
- Standard aerogel ($n = 1.045$, thickness = 20mm, transmission length = 41mm @400nm), and many other aerogels.
Cherenkov Ring Observed

Succeeded to observe Cherenkov Ring using HAPD!!
Cherenkov Ring Observed

Result of quick analysis for a run with 2cm aerogel radiator

- Clear Cherenkov ring is observed!
- 4.8 photo-electrons per track.
 - Consistent with the old result with Flat-panel PMT (6.4 p.e.) if we consider smaller acceptance (84% → 68%) and gap btw HAPD.
- Resolution 12.4 mrad per photon (was 13.6 mrad)
- Single track resolution 5.7 mrad corresponding to 4.0σ K/π separation.

N(p.e.) = 4.8
σθ_c = 12.4 mrad
Background

However, background shape is different

beam induced hits, but why two peaks?

additional structure

Beam tends to pass the upper HAPD; the additional structure is considered to be related to the beam.
Background

Possible explanation

- AD is visible
- 4mm thick glass (1.5mm for Flatpanel PMT)

In order to understand the source of the background, we have tested different configuration (thicker glass, incident angle dependence).

Cherenkov Ring

- Cherenkov @ glass + reflection @ AD
- Cherenkov @ glass + reflection
- Cherenkov @ glass / direct hit to AD

Back scattering electron

Reflection @ AD

Aerogel

Photocathode

Glass

AD

HAPD

electron

photon
Threshold Dependence

Threshold dependence

- Reasonable behaviour.
- Background inside the ring also disappear except the background in the center.
- Fine scan is done in the second beam test.

Nominal setting

<table>
<thead>
<tr>
<th>Threshold (mV)</th>
<th>190mV</th>
<th>290mV</th>
<th>390mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Npe</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

S.Nishida (KEK)
Jun. 17, 2008
Development of 144ch HAPD for Aerogel RICH for Belle Upgrade
NDIP2008
17
Focusing RICH

- Thicker aerogel increases N(p.e.), but makes resolution worse.
- One solution is “focusing” RICH.
- Superimpose rings from two (or more) radiators with different indices.

\[
\begin{align*}
\text{Thicker } n_1 & \text{ increases } \text{N(p.e.)}, \text{ but makes resolution worse.} \\
\text{One solution is “focusing” RICH.} \\
\text{Superimpose rings from two (or more) } & \text{radiators with different indices.}
\end{align*}
\]

\[
\begin{align*}
\text{N.p.e} & \text{ vs Thickness (mm)} \\
\text{Resolution (mrad) for single vs multiple radiator} \\
\text{σ(track) (mrad) for single vs multiple radiator}
\end{align*}
\]

- aerogel indices 1.046, 1.050, 1.056, 1.064 for multiple radiator.

This focusing scheme was already studied before; confirmed by the beam test with HAPD.
Summary

- As an upgrade of the endcap ACC in Belle, we are developing Aerogel RICH detector.
- 144 ch HAPD is a perspective candidate of the photodetector.
 - Single photon peak can be clearly observed.
- Readout using ASIC
 - Successfully readout 1 p.e. level HAPD signal using ASIC.
- Beam test with a 2 × 3 array of 144 ch HAPD.
 - Cherenkov ring is observed with HAPD for the first time!
 - Reasonable performance (Np.e.; resolution)
 - Unknown background inside the ring (reflection at AD ...).

Future Plan

- More configuration has been studied in the second beam test; data will be analyzed soon.
 - Understand background; more realistic HAPD configuration etc.
- New version of ASIC was delivered. To be tested.
- Test under 1.5T magnetic field.
Backup
Aerogel RICH Development

cherenkov ring by image intensifier

2000 2001 2002 2003 2004 2005 2006

6×6 multi-anode PMT (R5900-M16)

4×4 flat-panel PMT (H8500)

σ(\text{angle}) = 14 \text{ mrad}
N(\text{p.e.}) = 6

σ(\text{angle}) = 13 \text{ mrad}
N(\text{p.e.}) = 9

Focusing Type

Try to increase detected photons without making the resolution worse

HAPD etc.

basic principle

systematic study

performance improvement

S.Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008 21
144ch HAPD

History

- 2002: single channel HPD
- 2003: 3×3-channel HAPD
- 2004: 1st prototype of 144-channel HAPD

- many dead chips, large noise

2007 Aug: new (good) sample

- All the 4 chips are alive.
- Quantum efficiency ~ 26.9% (peak)
- Maximum high voltage to photocathode = −8.5kV
- Maximum bias voltage:
 - chip A: 331V, chip B: 331V,
 - chip C: 337V, chip D: 343V

measure the performance
S.Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

Experimental Setup

- LED: 420nm
- PreAmp: ClearPulse 580K
- Shaper: ClearPulse 4417
- ADC: Amptek Pocket MCA
Uniformity

Measure uniformity for one APD chip (36 ch)

- No large channel dependence in gain, S/N.
- Problem in the channels at edge.
 - Similar effects seen in old samples.
 - Maybe distortion of the electric field inside the tube?

- too noisy with bias voltage
- dominated by the crosstalk from neighboring channel
ASIC Specification

Specification:

- Production at VDEC (Tokyo Univ)
- Process: ROHM CMOS 0.35 [μm]
- Target Noise Level: 1200 [e] @ 80pF (HAPD)
- Std. Input Signal: 12000 e
- #(channel) = 18 [ch/chip]
- Readout: Pipeline with shift register
- S/N = 10
- Power Consumption = 3 [mW/ch]

- Shaping time 0.3 ~ 2.0 [μs]
- Variable gain 1.25 ~ 20
- Offset adjustment
 - Overall ±200 mV
 - Channel by channel ±30 mV

![Graph showing noise level vs capacitance](image_url)

Measured noise level:

- ~1900 e @ 80 pF (HAPD)
ASIC Performance

Offset adjustment

before

after

Gain Difference

100mV

Gain = 5

(In this plot, 1 p.e. is assumed to be 12000e).

Linearity with reasonable range.

Gain = 2.5

S.Nishida (KEK)

Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008
HAPD Readout with ASIC

HAPD ASIC (8 chips) digital I/O board (VME)

Readout of HAPD signal with the ASIC is tested.

- The surface of HAPD is covered by a black sheet except for one channel.
- Light corresponding to ~10 photons is emitted from LED.
- Trigger for readout is provided from LED control signal.
- Threshold is set to ~30000 e.

Only 2 ASICs are connected.

monitor signal of ASIC

S. Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade
HAPD Readout with ASIC

LED OFF

- Distribution of output of ASIC (digital) for 1000 LED clocks.
- All the channels except the center are covered by black sheet.

LED ON

Successfully readout all the channels in one (APD) chips using 2 ASICs, simultaneously

A big step for HAPD readout

S. Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008 28
In parallel, we start developing a new version of ASIC

- Present ASIC (developed for evaluation) is not enough for readout of large amount of channels.
- Drop out the digital part (shift registers) from the ASIC, so that it becomes more flexible. Digital part will be provided by external FPGA.
- More channels per chip (18 → 36 or 72).

New ASIC will be submitted on December

- Test production at MOSIS.
- TSMC 0.35 μm processes.
- With 12ch (with 3 × 3mm² chip) this time, but with more channels (e.g. 3 × 8mm² chip) in future.
HAPD Performance

Multi-photon

Bombardment gain (by Hamamatsu)

Q.E.

S.Nishida (KEK)
Jun. 17, 2008
Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008
Uniformity

<Measurement for the old sample>

Position Resolution

outside inside

0.1mm pitch scan

Problem in ch1 (channel at the edge)

photon incident position

Distortion of electric field?

• If so, the situation becomes better with the (1.5T) magnetic field.

• Will be tested.
Threshold Scan

Measure the efficiency of digital output varying the threshold.

↓

Estimate the pulse height and noise.

(1) Threshold Scan

- Measure the efficiency of digital output varying the threshold.
- Estimate the pulse height and noise.

(2) Measured data

- Sigma(z) = 0.003762 ± 0.0001
- Mean(p) = 0.08772 ± 0.006
- Sigma(p) = 0.004983 ± 0.0001

(3) Graph

- Pulse height and noise

S.Nishida (KEK)

Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008
ASIC Analog Part

S.Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008 33
ASIC Digital Part

S. Nishida (KEK)
Jun. 17, 2008

Development of 144ch HAPD for Aerogel RICH for Belle Upgrade

NDIP2008 34